mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
162 lines
6.7 KiB
C++
162 lines
6.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m)
|
|
{
|
|
typedef typename VectorType::Index Index;
|
|
typedef typename VectorType::Scalar Scalar;
|
|
|
|
Index size = m.size();
|
|
|
|
VectorType v = VectorType::Random(size);
|
|
|
|
Index arraysize = 3*size;
|
|
|
|
Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
|
|
Scalar* array = a_array;
|
|
if(Alignment!=Aligned)
|
|
array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
|
|
|
|
{
|
|
Map<VectorType, Alignment, InnerStride<3> > map(array, size);
|
|
map = v;
|
|
for(int i = 0; i < size; ++i)
|
|
{
|
|
VERIFY(array[3*i] == v[i]);
|
|
VERIFY(map[i] == v[i]);
|
|
}
|
|
}
|
|
|
|
{
|
|
Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2));
|
|
map = v;
|
|
for(int i = 0; i < size; ++i)
|
|
{
|
|
VERIFY(array[2*i] == v[i]);
|
|
VERIFY(map[i] == v[i]);
|
|
}
|
|
}
|
|
|
|
internal::aligned_delete(a_array, arraysize+1);
|
|
}
|
|
|
|
template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
Index rows = _m.rows(), cols = _m.cols();
|
|
|
|
MatrixType m = MatrixType::Random(rows,cols);
|
|
|
|
Index arraysize = 2*(rows+4)*(cols+4);
|
|
|
|
Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
|
|
Scalar* array = a_array;
|
|
if(Alignment!=Aligned)
|
|
array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
|
|
|
|
// test no inner stride and some dynamic outer stride
|
|
{
|
|
Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1));
|
|
map = m;
|
|
VERIFY(map.outerStride() == map.innerSize()+1);
|
|
for(int i = 0; i < m.outerSize(); ++i)
|
|
for(int j = 0; j < m.innerSize(); ++j)
|
|
{
|
|
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
|
|
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
|
}
|
|
}
|
|
|
|
// test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
|
|
// this allows to hit the special case where it's vectorizable.
|
|
{
|
|
enum {
|
|
InnerSize = MatrixType::InnerSizeAtCompileTime,
|
|
OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4
|
|
};
|
|
Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> >
|
|
map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4));
|
|
map = m;
|
|
VERIFY(map.outerStride() == map.innerSize()+4);
|
|
for(int i = 0; i < m.outerSize(); ++i)
|
|
for(int j = 0; j < m.innerSize(); ++j)
|
|
{
|
|
VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
|
|
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
|
}
|
|
}
|
|
|
|
// test both inner stride and outer stride
|
|
{
|
|
Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2));
|
|
map = m;
|
|
VERIFY(map.outerStride() == 2*map.innerSize()+1);
|
|
VERIFY(map.innerStride() == 2);
|
|
for(int i = 0; i < m.outerSize(); ++i)
|
|
for(int j = 0; j < m.innerSize(); ++j)
|
|
{
|
|
VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
|
|
VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
|
|
}
|
|
}
|
|
|
|
internal::aligned_delete(a_array, arraysize+1);
|
|
}
|
|
|
|
void test_mapstride()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
EIGEN_UNUSED int maxn = 30;
|
|
CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
|
|
CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) );
|
|
CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) );
|
|
CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) );
|
|
CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );
|
|
|
|
CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) );
|
|
CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) );
|
|
CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) );
|
|
CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) );
|
|
CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) );
|
|
CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) );
|
|
CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
|
|
}
|
|
}
|