mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
70 lines
3.6 KiB
Plaintext
70 lines
3.6 KiB
Plaintext
namespace Eigen {
|
|
|
|
/** \page TopicCustomizing_Plugins Extending MatrixBase (and other classes)
|
|
|
|
In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API.
|
|
|
|
You certainly know that in C++ it is not possible to add methods to an existing class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN:
|
|
\code
|
|
class MatrixBase {
|
|
// ...
|
|
#ifdef EIGEN_MATRIXBASE_PLUGIN
|
|
#include EIGEN_MATRIXBASE_PLUGIN
|
|
#endif
|
|
};
|
|
\endcode
|
|
Therefore to extend MatrixBase with your own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file.
|
|
|
|
You can extend many of the other classes used in Eigen by defining similarly named preprocessor symbols. For instance, define \c EIGEN_ARRAYBASE_PLUGIN if you want to extend the ArrayBase class. A full list of classes that can be extended in this way and the corresponding preprocessor symbols can be found on our page \ref TopicPreprocessorDirectives.
|
|
|
|
Here is an example of an extension file for adding methods to MatrixBase: \n
|
|
\b MatrixBaseAddons.h
|
|
\code
|
|
inline Scalar at(uint i, uint j) const { return this->operator()(i,j); }
|
|
inline Scalar& at(uint i, uint j) { return this->operator()(i,j); }
|
|
inline Scalar at(uint i) const { return this->operator[](i); }
|
|
inline Scalar& at(uint i) { return this->operator[](i); }
|
|
|
|
inline RealScalar squaredLength() const { return squaredNorm(); }
|
|
inline RealScalar length() const { return norm(); }
|
|
inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); }
|
|
|
|
template<typename OtherDerived>
|
|
inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const
|
|
{ return (derived() - other.derived()).squaredNorm(); }
|
|
|
|
template<typename OtherDerived>
|
|
inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const
|
|
{ return internal::sqrt(derived().squaredDistanceTo(other)); }
|
|
|
|
inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); }
|
|
|
|
inline Transpose<Derived> transposed() {return this->transpose();}
|
|
inline const Transpose<Derived> transposed() const {return this->transpose();}
|
|
|
|
inline uint minComponentId(void) const { int i; this->minCoeff(&i); return i; }
|
|
inline uint maxComponentId(void) const { int i; this->maxCoeff(&i); return i; }
|
|
|
|
template<typename OtherDerived>
|
|
void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMin(other.derived()); }
|
|
template<typename OtherDerived>
|
|
void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMax(other.derived()); }
|
|
|
|
const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>
|
|
operator+(const Scalar& scalar) const
|
|
{ return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>(derived(), Constant(rows(),cols(),scalar)); }
|
|
|
|
friend const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>
|
|
operator+(const Scalar& scalar, const MatrixBase<Derived>& mat)
|
|
{ return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>(Constant(rows(),cols(),scalar), mat.derived()); }
|
|
\endcode
|
|
|
|
Then one can the following declaration in the config.h or whatever prerequisites header file of his project:
|
|
\code
|
|
#define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h"
|
|
\endcode
|
|
|
|
*/
|
|
|
|
}
|