eigen/test/cwiseop.cpp
Gael Guennebaud 138aad0ed0 * coefficient wise operators are more generic, with controllable result type.
- compatible with current STL's functors as well as with the extention proposal (TR1)
 * thanks to the above, Cast and ScalarMultiple have been removed
 * benchmark_suite is more flexible (compiler and matrix size)
2008-03-06 11:36:27 +00:00

83 lines
3.1 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <iostream>
#include <cmath>
#include <cstdlib>
namespace Eigen {
struct AddIfNull {
template<typename Scalar> Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
};
template<typename MatrixType> void cwiseops(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
mones = MatrixType::ones(rows, cols),
identity = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::Traits::RowsAtCompileTime, MatrixType::Traits::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
v2 = VectorType::random(rows),
vzero = VectorType::zero(rows);
m2 = m2.template cwise<AddIfNull>(mones);
VERIFY_IS_APPROX( mzero, m1-m1);
VERIFY_IS_APPROX( m2, m1+m2-m1);
VERIFY_IS_APPROX( mones, m2.cwiseQuotient(m2));
VERIFY_IS_APPROX( m1.cwiseProduct(m2), m2.cwiseProduct(m1));
//VERIFY_IS_APPROX( m1, m2.cwiseProduct(m1).cwiseQuotient(m2));
// VERIFY_IS_APPROX( cwiseMin(m1,m2), cwiseMin(m2,m1) );
// VERIFY_IS_APPROX( cwiseMin(m1,m1+mones), m1 );
// VERIFY_IS_APPROX( cwiseMin(m1,m1-mones), m1-mones );
}
void EigenTest::testCwiseops()
{
for(int i = 0; i < m_repeat ; i++) {
cwiseops(Matrix<float, 1, 1>());
cwiseops(Matrix4d());
cwiseops(MatrixXf(3, 3));
cwiseops(MatrixXi(8, 12));
cwiseops(MatrixXd(20, 20));
}
}
} // namespace Eigen