eigen/test/nomalloc.cpp

144 lines
5.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
// this hack is needed to make this file compiles with -pedantic (gcc)
#ifdef __GNUC__
#define throw(X)
#endif
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
// any heap allocation will raise an assert
#define EIGEN_NO_MALLOC
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/Eigenvalues>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>
template<typename MatrixType> void nomalloc(const MatrixType& m)
{
/* this test check no dynamic memory allocation are issued with fixed-size matrices
*/
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Random(rows, rows);
VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
Scalar s1 = ei_random<Scalar>();
Index r = ei_random<Index>(0, rows-1),
c = ei_random<Index>(0, cols-1);
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) {
// If the matrices are too large, we have better to use the optimized GEMM
// routines which allocates temporaries. However, on some platforms
// these temporaries are allocated on the stack using alloca.
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
}
}
template<typename Scalar>
void ctms_decompositions()
{
const int maxSize = 16;
const int size = 12;
typedef Eigen::Matrix<Scalar,
Eigen::Dynamic, Eigen::Dynamic,
0,
maxSize, maxSize> Matrix;
typedef Eigen::Matrix<Scalar,
Eigen::Dynamic, 1,
0,
maxSize, 1> Vector;
typedef Eigen::Matrix<std::complex<Scalar>,
Eigen::Dynamic, Eigen::Dynamic,
0,
maxSize, maxSize> ComplexMatrix;
const Matrix A(Matrix::Random(size, size));
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
const Matrix saA = A.adjoint() * A;
// Cholesky module
Eigen::LLT<Matrix> LLT; LLT.compute(A);
Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
// Eigenvalues module
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack)
Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
// LU module
Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
// QR module
Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
// SVD module
Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A);
Eigen::SVD<Matrix> svd; svd.compute(A);
}
void test_nomalloc()
{
// check that our operator new is indeed called:
VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3,3)));
CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2(nomalloc(Matrix4d()) );
CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
// Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
CALL_SUBTEST_4(ctms_decompositions<float>());
}