mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
71 lines
2.4 KiB
C++
71 lines
2.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Geometry>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/SVD>
|
|
|
|
template<typename Scalar> void eulerangles(void)
|
|
{
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Quaternion<Scalar> Quaternionx;
|
|
typedef AngleAxis<Scalar> AngleAxisx;
|
|
|
|
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
|
Quaternionx q1;
|
|
q1 = AngleAxisx(a, Vector3::Random().normalized());
|
|
Matrix3 m;
|
|
m = q1;
|
|
|
|
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
|
|
Vector3 ea = m.eulerAngles(I,J,K); \
|
|
Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
|
|
VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
|
|
}
|
|
VERIFY_EULER(0,1,2, X,Y,Z);
|
|
VERIFY_EULER(0,1,0, X,Y,X);
|
|
VERIFY_EULER(0,2,1, X,Z,Y);
|
|
VERIFY_EULER(0,2,0, X,Z,X);
|
|
|
|
VERIFY_EULER(1,2,0, Y,Z,X);
|
|
VERIFY_EULER(1,2,1, Y,Z,Y);
|
|
VERIFY_EULER(1,0,2, Y,X,Z);
|
|
VERIFY_EULER(1,0,1, Y,X,Y);
|
|
|
|
VERIFY_EULER(2,0,1, Z,X,Y);
|
|
VERIFY_EULER(2,0,2, Z,X,Z);
|
|
VERIFY_EULER(2,1,0, Z,Y,X);
|
|
VERIFY_EULER(2,1,2, Z,Y,Z);
|
|
}
|
|
|
|
void test_geo_eulerangles()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( eulerangles<float>() );
|
|
CALL_SUBTEST_2( eulerangles<double>() );
|
|
}
|
|
}
|