mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
72 lines
2.4 KiB
C++
72 lines
2.4 KiB
C++
// This file is triangularView of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void bandmatrix(const MatrixType& _m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrixType;
|
|
|
|
Index rows = _m.rows();
|
|
Index cols = _m.cols();
|
|
Index supers = _m.supers();
|
|
Index subs = _m.subs();
|
|
|
|
MatrixType m(rows,cols,supers,subs);
|
|
|
|
DenseMatrixType dm1(rows,cols);
|
|
dm1.setZero();
|
|
|
|
m.diagonal().setConstant(123);
|
|
dm1.diagonal().setConstant(123);
|
|
for (int i=1; i<=m.supers();++i)
|
|
{
|
|
m.diagonal(i).setConstant(static_cast<RealScalar>(i));
|
|
dm1.diagonal(i).setConstant(static_cast<RealScalar>(i));
|
|
}
|
|
for (int i=1; i<=m.subs();++i)
|
|
{
|
|
m.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
|
dm1.diagonal(-i).setConstant(-static_cast<RealScalar>(i));
|
|
}
|
|
//std::cerr << m.m_data << "\n\n" << m.toDense() << "\n\n" << dm1 << "\n\n\n\n";
|
|
VERIFY_IS_APPROX(dm1,m.toDenseMatrix());
|
|
|
|
for (int i=0; i<cols; ++i)
|
|
{
|
|
m.col(i).setConstant(static_cast<RealScalar>(i+1));
|
|
dm1.col(i).setConstant(static_cast<RealScalar>(i+1));
|
|
}
|
|
Index d = (std::min)(rows,cols);
|
|
Index a = std::max<Index>(0,cols-d-supers);
|
|
Index b = std::max<Index>(0,rows-d-subs);
|
|
if(a>0) dm1.block(0,d+supers,rows,a).setZero();
|
|
dm1.block(0,supers+1,cols-supers-1-a,cols-supers-1-a).template triangularView<Upper>().setZero();
|
|
dm1.block(subs+1,0,rows-subs-1-b,rows-subs-1-b).template triangularView<Lower>().setZero();
|
|
if(b>0) dm1.block(d+subs,0,b,cols).setZero();
|
|
//std::cerr << m.m_data << "\n\n" << m.toDense() << "\n\n" << dm1 << "\n\n";
|
|
VERIFY_IS_APPROX(dm1,m.toDenseMatrix());
|
|
|
|
}
|
|
|
|
using Eigen::internal::BandMatrix;
|
|
|
|
EIGEN_DECLARE_TEST(bandmatrix)
|
|
{
|
|
for(int i = 0; i < 10*g_repeat ; i++) {
|
|
Index rows = internal::random<Index>(1,10);
|
|
Index cols = internal::random<Index>(1,10);
|
|
Index sups = internal::random<Index>(0,cols-1);
|
|
Index subs = internal::random<Index>(0,rows-1);
|
|
CALL_SUBTEST(bandmatrix(BandMatrix<float>(rows,cols,sups,subs)) );
|
|
}
|
|
}
|