eigen/test/inverse.cpp
Gael Guennebaud f0394edfa7 * bugfix in SolveTriangular found by Timothy Hunter (did not compiled for very small fixed size matrices)
* bugfix in Dot unroller
* added special random generator for the unit tests and reduced the tolerance threshold by an order of magnitude
  this fixes issues with sum.cpp but other tests still failed sometimes, this have to be carefully checked...
2008-08-22 17:48:36 +00:00

73 lines
2.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/LU>
template<typename MatrixType> void inverse(const MatrixType& m)
{
/* this test covers the following files:
Inverse.h
*/
int rows = m.rows();
int cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
m2 = test_random_matrix<MatrixType>(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = MatrixType::Identity(rows, rows);
m2 = m1.inverse();
VERIFY_IS_APPROX(m1, m2.inverse() );
m1.computeInverse(&m2);
VERIFY_IS_APPROX(m1, m2.inverse() );
VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
// since for the general case we implement separately row-major and col-major, test that
VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
}
void test_inverse()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( inverse(Matrix<double,1,1>()) );
CALL_SUBTEST( inverse(Matrix2d()) );
CALL_SUBTEST( inverse(Matrix3f()) );
CALL_SUBTEST( inverse(Matrix4f()) );
CALL_SUBTEST( inverse(MatrixXf(8,8)) );
CALL_SUBTEST( inverse(MatrixXcd(7,7)) );
}
}