mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
8e875719b3
For random matrices with integer coefficients, many of the tests here lead to integer overflows. When taking the norm() of a row/column, the squaredNorm() often overflows to a negative value, leading to domain errors when taking the sqrt(). This leads to a crash on some systems. By replacing the norm() call by a squaredNorm(), the values still overflow, but at least there is no domain error. Addresses https://gitlab.com/libeigen/eigen/-/issues/1856
530 lines
17 KiB
C++
530 lines
17 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include "main.h"
|
|
|
|
template< class Iterator >
|
|
std::reverse_iterator<Iterator>
|
|
make_reverse_iterator( Iterator i )
|
|
{
|
|
return std::reverse_iterator<Iterator>(i);
|
|
}
|
|
|
|
#if !EIGEN_HAS_CXX11
|
|
template<class ForwardIt>
|
|
ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt)
|
|
{
|
|
if (firstIt != lastIt) {
|
|
ForwardIt next = firstIt;
|
|
while (++next != lastIt) {
|
|
if (*next < *firstIt)
|
|
return next;
|
|
firstIt = next;
|
|
}
|
|
}
|
|
return lastIt;
|
|
}
|
|
template<class ForwardIt>
|
|
bool is_sorted(ForwardIt firstIt, ForwardIt lastIt)
|
|
{
|
|
return ::is_sorted_until(firstIt, lastIt) == lastIt;
|
|
}
|
|
#else
|
|
using std::is_sorted;
|
|
#endif
|
|
|
|
template<typename XprType>
|
|
bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; }
|
|
|
|
template<typename XprType>
|
|
bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; }
|
|
|
|
template<typename Xpr>
|
|
void check_begin_end_for_loop(Xpr xpr)
|
|
{
|
|
const Xpr& cxpr(xpr);
|
|
Index i = 0;
|
|
|
|
i = 0;
|
|
for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
|
|
|
|
i = 0;
|
|
for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
|
|
|
|
i = 0;
|
|
for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
|
|
|
|
i = 0;
|
|
for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); }
|
|
|
|
{
|
|
// simple API check
|
|
typename Xpr::const_iterator cit = xpr.begin();
|
|
cit = xpr.cbegin();
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
auto tmp1 = xpr.begin();
|
|
VERIFY(tmp1==xpr.begin());
|
|
auto tmp2 = xpr.cbegin();
|
|
VERIFY(tmp2==xpr.cbegin());
|
|
#endif
|
|
}
|
|
|
|
VERIFY( xpr.end() -xpr.begin() == xpr.size() );
|
|
VERIFY( xpr.cend()-xpr.begin() == xpr.size() );
|
|
VERIFY( xpr.end() -xpr.cbegin() == xpr.size() );
|
|
VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() );
|
|
|
|
if(xpr.size()>0) {
|
|
VERIFY(xpr.begin() != xpr.end());
|
|
VERIFY(xpr.begin() < xpr.end());
|
|
VERIFY(xpr.begin() <= xpr.end());
|
|
VERIFY(!(xpr.begin() == xpr.end()));
|
|
VERIFY(!(xpr.begin() > xpr.end()));
|
|
VERIFY(!(xpr.begin() >= xpr.end()));
|
|
|
|
VERIFY(xpr.cbegin() != xpr.end());
|
|
VERIFY(xpr.cbegin() < xpr.end());
|
|
VERIFY(xpr.cbegin() <= xpr.end());
|
|
VERIFY(!(xpr.cbegin() == xpr.end()));
|
|
VERIFY(!(xpr.cbegin() > xpr.end()));
|
|
VERIFY(!(xpr.cbegin() >= xpr.end()));
|
|
|
|
VERIFY(xpr.begin() != xpr.cend());
|
|
VERIFY(xpr.begin() < xpr.cend());
|
|
VERIFY(xpr.begin() <= xpr.cend());
|
|
VERIFY(!(xpr.begin() == xpr.cend()));
|
|
VERIFY(!(xpr.begin() > xpr.cend()));
|
|
VERIFY(!(xpr.begin() >= xpr.cend()));
|
|
}
|
|
}
|
|
|
|
template<typename Scalar, int Rows, int Cols>
|
|
void test_stl_iterators(int rows=Rows, int cols=Cols)
|
|
{
|
|
typedef Matrix<Scalar,Rows,1> VectorType;
|
|
#if EIGEN_HAS_CXX11
|
|
typedef Matrix<Scalar,1,Cols> RowVectorType;
|
|
#endif
|
|
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
|
|
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
|
|
VectorType v = VectorType::Random(rows);
|
|
const VectorType& cv(v);
|
|
ColMatrixType A = ColMatrixType::Random(rows,cols);
|
|
const ColMatrixType& cA(A);
|
|
RowMatrixType B = RowMatrixType::Random(rows,cols);
|
|
|
|
Index i, j;
|
|
|
|
// Check we got a fast pointer-based iterator when expected
|
|
{
|
|
VERIFY( is_pointer_based_stl_iterator(v.begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(v.end()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cv.begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cv.end()) );
|
|
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) );
|
|
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) );
|
|
|
|
VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) );
|
|
|
|
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) );
|
|
VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) );
|
|
|
|
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) );
|
|
VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) );
|
|
}
|
|
|
|
{
|
|
check_begin_end_for_loop(v);
|
|
check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1)));
|
|
check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1)));
|
|
check_begin_end_for_loop(v+v);
|
|
}
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
// check swappable
|
|
{
|
|
using std::swap;
|
|
// pointer-based
|
|
{
|
|
VectorType v_copy = v;
|
|
auto a = v.begin();
|
|
auto b = v.end()-1;
|
|
swap(a,b);
|
|
VERIFY_IS_EQUAL(v,v_copy);
|
|
VERIFY_IS_EQUAL(*b,*v.begin());
|
|
VERIFY_IS_EQUAL(*b,v(0));
|
|
VERIFY_IS_EQUAL(*a,v.end()[-1]);
|
|
VERIFY_IS_EQUAL(*a,v(last));
|
|
}
|
|
|
|
// generic
|
|
{
|
|
RowMatrixType B_copy = B;
|
|
auto Br = B.reshaped();
|
|
auto a = Br.begin();
|
|
auto b = Br.end()-1;
|
|
swap(a,b);
|
|
VERIFY_IS_EQUAL(B,B_copy);
|
|
VERIFY_IS_EQUAL(*b,*Br.begin());
|
|
VERIFY_IS_EQUAL(*b,Br(0));
|
|
VERIFY_IS_EQUAL(*a,Br.end()[-1]);
|
|
VERIFY_IS_EQUAL(*a,Br(last));
|
|
}
|
|
}
|
|
|
|
// check non-const iterator with for-range loops
|
|
{
|
|
i = 0;
|
|
for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); }
|
|
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
i = 0;
|
|
for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); }
|
|
|
|
i = 0;
|
|
for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; }
|
|
|
|
j = 0;
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
|
|
|
|
i = 0;
|
|
for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
|
|
}
|
|
|
|
// same for const_iterator
|
|
{
|
|
i = 0;
|
|
for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); }
|
|
|
|
i = 0;
|
|
for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); }
|
|
|
|
j = 0;
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); }
|
|
}
|
|
|
|
// check reshaped() on row-major
|
|
{
|
|
i = 0;
|
|
Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B;
|
|
for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); }
|
|
}
|
|
|
|
// check write access
|
|
{
|
|
VectorType w(v.size());
|
|
i = 0;
|
|
for(auto& x : w) { x = v(i++); }
|
|
VERIFY_IS_EQUAL(v,w);
|
|
}
|
|
|
|
// check for dangling pointers
|
|
{
|
|
// no dangling because pointer-based
|
|
{
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
auto it = A.col(j).begin();
|
|
for(i=0;i<rows;++i) {
|
|
VERIFY_IS_EQUAL(it[i],A(i,j));
|
|
}
|
|
}
|
|
|
|
// no dangling because pointer-based
|
|
{
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
auto it = A.row(i).begin();
|
|
for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); }
|
|
}
|
|
|
|
{
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
// this would produce a dangling pointer:
|
|
// auto it = (A+2*A).col(j).begin();
|
|
// we need to name the temporary expression:
|
|
auto tmp = (A+2*A).col(j);
|
|
auto it = tmp.begin();
|
|
for(i=0;i<rows;++i) {
|
|
VERIFY_IS_APPROX(it[i],3*A(i,j));
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
// check basic for loop on vector-wise iterators
|
|
j=0;
|
|
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
|
|
VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
|
|
VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
|
|
}
|
|
j=0;
|
|
for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
|
|
(*it).coeffRef(0) = (*it).coeff(0); // compilation check
|
|
it->coeffRef(0) = it->coeff(0); // compilation check
|
|
VERIFY_IS_APPROX( it->coeff(0), A(0,j) );
|
|
VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) );
|
|
}
|
|
|
|
// check valuetype gives us a copy
|
|
j=0;
|
|
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
|
|
typename decltype(it)::value_type tmp = *it;
|
|
VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() );
|
|
VERIFY_IS_APPROX( tmp, A.col(j) );
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if(rows>=3) {
|
|
VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1));
|
|
|
|
VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1));
|
|
}
|
|
|
|
if(cols>=3) {
|
|
VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1));
|
|
}
|
|
|
|
// check std::sort
|
|
{
|
|
// first check that is_sorted returns false when required
|
|
if(rows>=2)
|
|
{
|
|
v(1) = v(0)-Scalar(1);
|
|
#if EIGEN_HAS_CXX11
|
|
VERIFY(!is_sorted(std::begin(v),std::end(v)));
|
|
#else
|
|
VERIFY(!is_sorted(v.cbegin(),v.cend()));
|
|
#endif
|
|
}
|
|
|
|
// on a vector
|
|
{
|
|
std::sort(v.begin(),v.end());
|
|
VERIFY(is_sorted(v.begin(),v.end()));
|
|
VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin())));
|
|
}
|
|
|
|
// on a column of a column-major matrix -> pointer-based iterator and default increment
|
|
{
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
|
|
typename ColMatrixType::ColXpr Acol = A.col(j);
|
|
std::sort(Acol.begin(),Acol.end());
|
|
VERIFY(is_sorted(Acol.cbegin(),Acol.cend()));
|
|
A.setRandom();
|
|
|
|
std::sort(A.col(j).begin(),A.col(j).end());
|
|
VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend()));
|
|
A.setRandom();
|
|
}
|
|
|
|
// on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
|
|
{
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
typename ColMatrixType::RowXpr Arow = A.row(i);
|
|
VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols);
|
|
std::sort(Arow.begin(),Arow.end());
|
|
VERIFY(is_sorted(Arow.cbegin(),Arow.cend()));
|
|
A.setRandom();
|
|
|
|
std::sort(A.row(i).begin(),A.row(i).end());
|
|
VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend()));
|
|
A.setRandom();
|
|
}
|
|
|
|
// with a generic iterator
|
|
{
|
|
Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped();
|
|
std::sort(B1.begin(),B1.end());
|
|
VERIFY(is_sorted(B1.cbegin(),B1.cend()));
|
|
B.setRandom();
|
|
|
|
// assertion because nested expressions are different
|
|
// std::sort(B.reshaped().begin(),B.reshaped().end());
|
|
// VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
|
|
// B.setRandom();
|
|
}
|
|
}
|
|
|
|
// check with partial_sum
|
|
{
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
typename ColMatrixType::ColXpr Acol = A.col(j);
|
|
std::partial_sum(Acol.begin(), Acol.end(), v.begin());
|
|
VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last)));
|
|
|
|
// inplace
|
|
std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
|
|
VERIFY_IS_APPROX(v, Acol);
|
|
}
|
|
|
|
// stress random access as required by std::nth_element
|
|
if(rows>=3)
|
|
{
|
|
v.setRandom();
|
|
VectorType v1 = v;
|
|
std::sort(v1.begin(),v1.end());
|
|
std::nth_element(v.begin(), v.begin()+rows/2, v.end());
|
|
VERIFY_IS_APPROX(v1(rows/2), v(rows/2));
|
|
|
|
v.setRandom();
|
|
v1 = v;
|
|
std::sort(v1.begin()+rows/2,v1.end());
|
|
std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end());
|
|
VERIFY_IS_APPROX(v1(rows/4), v(rows/4));
|
|
}
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
// check rows/cols iterators with range-for loops
|
|
{
|
|
j = 0;
|
|
for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; }
|
|
j = 0;
|
|
for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; }
|
|
|
|
j = 0;
|
|
for(auto c : B.colwise()) {
|
|
i = 0;
|
|
for(auto& x : c) {
|
|
VERIFY_IS_EQUAL(x, B(i,j));
|
|
x = A(i,j);
|
|
++i;
|
|
}
|
|
++j;
|
|
}
|
|
VERIFY_IS_APPROX(A,B);
|
|
B.setRandom();
|
|
|
|
i = 0;
|
|
for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; }
|
|
i = 0;
|
|
for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; }
|
|
}
|
|
|
|
|
|
// check rows/cols iterators with STL algorithms
|
|
{
|
|
RowVectorType row = RowVectorType::Random(cols);
|
|
A.rowwise() = row;
|
|
VERIFY( std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) );
|
|
|
|
VectorType col = VectorType::Random(rows);
|
|
A.colwise() = col;
|
|
VERIFY( std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
|
|
VERIFY( std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) );
|
|
|
|
i = internal::random<Index>(0,A.rows()-1);
|
|
A.setRandom();
|
|
A.row(i).setZero();
|
|
VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(), A.rowwise().end(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(), i );
|
|
|
|
j = internal::random<Index>(0,A.cols()-1);
|
|
A.setRandom();
|
|
A.col(j).setZero();
|
|
VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(), A.colwise().end(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(), j );
|
|
}
|
|
|
|
{
|
|
using VecOp = VectorwiseOp<ArrayXXi, 0>;
|
|
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value ));
|
|
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend ())>::value ));
|
|
#if EIGEN_COMP_CXXVER>=14
|
|
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value ));
|
|
STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend (std::declval<const VecOp&>()))>::value ));
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
// When the compiler sees expression IsContainerTest<C>(0), if C is an
|
|
// STL-style container class, the first overload of IsContainerTest
|
|
// will be viable (since both C::iterator* and C::const_iterator* are
|
|
// valid types and NULL can be implicitly converted to them). It will
|
|
// be picked over the second overload as 'int' is a perfect match for
|
|
// the type of argument 0. If C::iterator or C::const_iterator is not
|
|
// a valid type, the first overload is not viable, and the second
|
|
// overload will be picked.
|
|
template <class C,
|
|
class Iterator = decltype(::std::declval<const C&>().begin()),
|
|
class = decltype(::std::declval<const C&>().end()),
|
|
class = decltype(++::std::declval<Iterator&>()),
|
|
class = decltype(*::std::declval<Iterator>()),
|
|
class = typename C::const_iterator>
|
|
bool IsContainerType(int /* dummy */) { return true; }
|
|
|
|
template <class C>
|
|
bool IsContainerType(long /* dummy */) { return false; }
|
|
|
|
template <typename Scalar, int Rows, int Cols>
|
|
void test_stl_container_detection(int rows=Rows, int cols=Cols)
|
|
{
|
|
typedef Matrix<Scalar,Rows,1> VectorType;
|
|
typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType;
|
|
typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType;
|
|
|
|
ColMatrixType A = ColMatrixType::Random(rows, cols);
|
|
RowMatrixType B = RowMatrixType::Random(rows, cols);
|
|
|
|
Index i = 1;
|
|
|
|
using ColMatrixColType = decltype(A.col(i));
|
|
using ColMatrixRowType = decltype(A.row(i));
|
|
using RowMatrixColType = decltype(B.col(i));
|
|
using RowMatrixRowType = decltype(B.row(i));
|
|
|
|
// Vector and matrix col/row are valid Stl-style container.
|
|
VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
|
|
VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
|
|
VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
|
|
VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
|
|
VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
|
|
|
|
// But the matrix itself is not a valid Stl-style container.
|
|
VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
|
|
VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
|
|
}
|
|
#endif
|
|
|
|
EIGEN_DECLARE_TEST(stl_iterators)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() ));
|
|
CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() ));
|
|
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) ));
|
|
CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) ));
|
|
}
|
|
|
|
#if EIGEN_HAS_CXX11
|
|
CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() ));
|
|
CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() ));
|
|
#endif
|
|
}
|