mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
0be89a4796
* add Homogeneous expression for vector and set of vectors (aka matrix) => the next step will be to overload operator* * add homogeneous normalization (again for vector and set of vectors) * add a Replicate expression (with uni-directional replication facilities) => for all of them I'll add examples once we agree on the API * fix gcc-4.4 warnings * rename reverse.cpp array_reverse.cpp
182 lines
5.8 KiB
C++
182 lines
5.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
template<typename MatrixType> void reverse(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols);
|
|
VectorType v1 = VectorType::Random(rows);
|
|
|
|
MatrixType m1_r = m1.reverse();
|
|
// Verify that MatrixBase::reverse() works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType> m1_rd(m1);
|
|
// Verify that a Reverse default (in both directions) of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, BothDirections> m1_rb(m1);
|
|
// Verify that a Reverse in both directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, Vertical> m1_rv(m1);
|
|
// Verify that a Reverse in the vertical directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, Horizontal> m1_rh(m1);
|
|
// Verify that a Reverse in the horizontal directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
VectorType v1_r = v1.reverse();
|
|
// Verify that a VectorType::reverse() of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
|
|
}
|
|
|
|
MatrixType m1_cr = m1.colwise().reverse();
|
|
// Verify that PartialRedux::reverse() works (for colwise())
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
|
|
}
|
|
}
|
|
|
|
MatrixType m1_rr = m1.rowwise().reverse();
|
|
// Verify that PartialRedux::reverse() works (for rowwise())
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
/*
|
|
cout << "m1:" << endl << m1 << endl;
|
|
cout << "m1c_reversed:" << endl << m1c_reversed << endl;
|
|
|
|
cout << "----------------" << endl;
|
|
|
|
for ( int i=0; i< rows*cols; i++){
|
|
cout << m1c_reversed.coeff(i) << endl;
|
|
}
|
|
|
|
cout << "----------------" << endl;
|
|
|
|
for ( int i=0; i< rows*cols; i++){
|
|
cout << m1c_reversed.colwise().reverse().coeff(i) << endl;
|
|
}
|
|
|
|
cout << "================" << endl;
|
|
|
|
cout << "m1.coeff( ind ): " << m1.coeff( ind ) << endl;
|
|
cout << "m1c_reversed.colwise().reverse().coeff( ind ): " << m1c_reversed.colwise().reverse().coeff( ind ) << endl;
|
|
*/
|
|
|
|
//MatrixType m1r_reversed = m1.rowwise().reverse();
|
|
//VERIFY_IS_APPROX( m1r_reversed.rowwise().reverse().coeff( ind ), m1.coeff( ind ) );
|
|
|
|
/*
|
|
cout << "m1" << endl << m1 << endl;
|
|
cout << "m1 using coeff(int index)" << endl;
|
|
for ( int i = 0; i < rows*cols; i++) {
|
|
cout << m1.coeff(i) << " ";
|
|
}
|
|
cout << endl;
|
|
|
|
cout << "m1.transpose()" << endl << m1.transpose() << endl;
|
|
cout << "m1.transpose() using coeff(int index)" << endl;
|
|
for ( int i = 0; i < rows*cols; i++) {
|
|
cout << m1.transpose().coeff(i) << " ";
|
|
}
|
|
cout << endl;
|
|
*/
|
|
/*
|
|
Scalar x = ei_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
m1.reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
|
|
|
|
m1.colwise().reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
|
|
|
|
m1.rowwise().reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
|
|
*/
|
|
}
|
|
|
|
void test_array_reverse()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( reverse(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( reverse(Matrix2f()) );
|
|
CALL_SUBTEST( reverse(Matrix4f()) );
|
|
CALL_SUBTEST( reverse(Matrix4d()) );
|
|
CALL_SUBTEST( reverse(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST( reverse(MatrixXi(6, 3)) );
|
|
CALL_SUBTEST( reverse(MatrixXcd(20, 20)) );
|
|
CALL_SUBTEST( reverse(Matrix<float, 100, 100>()) );
|
|
CALL_SUBTEST( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(6,3)) );
|
|
}
|
|
Vector4f x; x << 1, 2, 3, 4;
|
|
Vector4f y; y << 4, 3, 2, 1;
|
|
VERIFY(x.reverse()[1] == 3);
|
|
VERIFY(x.reverse() == y);
|
|
|
|
}
|