eigen/unsupported/test/splines.cpp
2016-02-09 20:43:41 -08:00

282 lines
8.3 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Hauke Heibel <heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/Splines>
namespace Eigen {
// lets do some explicit instantiations and thus
// force the compilation of all spline functions...
template class Spline<double, 2, Dynamic>;
template class Spline<double, 3, Dynamic>;
template class Spline<double, 2, 2>;
template class Spline<double, 2, 3>;
template class Spline<double, 2, 4>;
template class Spline<double, 2, 5>;
template class Spline<float, 2, Dynamic>;
template class Spline<float, 3, Dynamic>;
template class Spline<float, 3, 2>;
template class Spline<float, 3, 3>;
template class Spline<float, 3, 4>;
template class Spline<float, 3, 5>;
}
Spline<double, 2, Dynamic> closed_spline2d()
{
RowVectorXd knots(12);
knots << 0,
0,
0,
0,
0.867193179093898,
1.660330955342408,
2.605084834823134,
3.484154586374428,
4.252699478956276,
4.252699478956276,
4.252699478956276,
4.252699478956276;
MatrixXd ctrls(8,2);
ctrls << -0.370967741935484, 0.236842105263158,
-0.231401860693277, 0.442245185027632,
0.344361228532831, 0.773369994120753,
0.828990216203802, 0.106550882647595,
0.407270163678382, -1.043452922172848,
-0.488467813584053, -0.390098582530090,
-0.494657189446427, 0.054804824897884,
-0.370967741935484, 0.236842105263158;
ctrls.transposeInPlace();
return Spline<double, 2, Dynamic>(knots, ctrls);
}
/* create a reference spline */
Spline<double, 3, Dynamic> spline3d()
{
RowVectorXd knots(11);
knots << 0,
0,
0,
0.118997681558377,
0.162611735194631,
0.498364051982143,
0.655098003973841,
0.679702676853675,
1.000000000000000,
1.000000000000000,
1.000000000000000;
MatrixXd ctrls(8,3);
ctrls << 0.959743958516081, 0.340385726666133, 0.585267750979777,
0.223811939491137, 0.751267059305653, 0.255095115459269,
0.505957051665142, 0.699076722656686, 0.890903252535799,
0.959291425205444, 0.547215529963803, 0.138624442828679,
0.149294005559057, 0.257508254123736, 0.840717255983663,
0.254282178971531, 0.814284826068816, 0.243524968724989,
0.929263623187228, 0.349983765984809, 0.196595250431208,
0.251083857976031, 0.616044676146639, 0.473288848902729;
ctrls.transposeInPlace();
return Spline<double, 3, Dynamic>(knots, ctrls);
}
/* compares evaluations against known results */
void eval_spline3d()
{
Spline3d spline = spline3d();
RowVectorXd u(10);
u << 0.351659507062997,
0.830828627896291,
0.585264091152724,
0.549723608291140,
0.917193663829810,
0.285839018820374,
0.757200229110721,
0.753729094278495,
0.380445846975357,
0.567821640725221;
MatrixXd pts(10,3);
pts << 0.707620811535916, 0.510258911240815, 0.417485437023409,
0.603422256426978, 0.529498282727551, 0.270351549348981,
0.228364197569334, 0.423745615677815, 0.637687289287490,
0.275556796335168, 0.350856706427970, 0.684295784598905,
0.514519311047655, 0.525077224890754, 0.351628308305896,
0.724152914315666, 0.574461155457304, 0.469860285484058,
0.529365063753288, 0.613328702656816, 0.237837040141739,
0.522469395136878, 0.619099658652895, 0.237139665242069,
0.677357023849552, 0.480655768435853, 0.422227610314397,
0.247046593173758, 0.380604672404750, 0.670065791405019;
pts.transposeInPlace();
for (int i=0; i<u.size(); ++i)
{
Vector3d pt = spline(u(i));
VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
}
}
/* compares evaluations on corner cases */
void eval_spline3d_onbrks()
{
Spline3d spline = spline3d();
RowVectorXd u = spline.knots();
MatrixXd pts(11,3);
pts << 0.959743958516081, 0.340385726666133, 0.585267750979777,
0.959743958516081, 0.340385726666133, 0.585267750979777,
0.959743958516081, 0.340385726666133, 0.585267750979777,
0.430282980289940, 0.713074680056118, 0.720373307943349,
0.558074875553060, 0.681617921034459, 0.804417124839942,
0.407076008291750, 0.349707710518163, 0.617275937419545,
0.240037008286602, 0.738739390398014, 0.324554153129411,
0.302434111480572, 0.781162443963899, 0.240177089094644,
0.251083857976031, 0.616044676146639, 0.473288848902729,
0.251083857976031, 0.616044676146639, 0.473288848902729,
0.251083857976031, 0.616044676146639, 0.473288848902729;
pts.transposeInPlace();
for (int i=0; i<u.size(); ++i)
{
Vector3d pt = spline(u(i));
VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
}
}
void eval_closed_spline2d()
{
Spline2d spline = closed_spline2d();
RowVectorXd u(12);
u << 0,
0.332457030395796,
0.356467130532952,
0.453562180176215,
0.648017921874804,
0.973770235555003,
1.882577647219307,
2.289408593930498,
3.511951429883045,
3.884149321369450,
4.236261590369414,
4.252699478956276;
MatrixXd pts(12,2);
pts << -0.370967741935484, 0.236842105263158,
-0.152576775123250, 0.448975001279334,
-0.133417538277668, 0.461615613865667,
-0.053199060826740, 0.507630360006299,
0.114249591147281, 0.570414135097409,
0.377810316891987, 0.560497102875315,
0.665052120135908, -0.157557441109611,
0.516006487053228, -0.559763292174825,
-0.379486035348887, -0.331959640488223,
-0.462034726249078, -0.039105670080824,
-0.378730600917982, 0.225127015099919,
-0.370967741935484, 0.236842105263158;
pts.transposeInPlace();
for (int i=0; i<u.size(); ++i)
{
Vector2d pt = spline(u(i));
VERIFY( (pt - pts.col(i)).norm() < 1e-14 );
}
}
void check_global_interpolation2d()
{
typedef Spline2d::PointType PointType;
typedef Spline2d::KnotVectorType KnotVectorType;
typedef Spline2d::ControlPointVectorType ControlPointVectorType;
ControlPointVectorType points = ControlPointVectorType::Random(2,100);
KnotVectorType chord_lengths; // knot parameters
Eigen::ChordLengths(points, chord_lengths);
// interpolation without knot parameters
{
const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3);
for (Eigen::DenseIndex i=0; i<points.cols(); ++i)
{
PointType pt = spline( chord_lengths(i) );
PointType ref = points.col(i);
VERIFY( (pt - ref).matrix().norm() < 1e-14 );
}
}
// interpolation with given knot parameters
{
const Spline2d spline = SplineFitting<Spline2d>::Interpolate(points,3,chord_lengths);
for (Eigen::DenseIndex i=0; i<points.cols(); ++i)
{
PointType pt = spline( chord_lengths(i) );
PointType ref = points.col(i);
VERIFY( (pt - ref).matrix().norm() < 1e-14 );
}
}
}
void check_global_interpolation_with_derivatives2d()
{
typedef Spline2d::PointType PointType;
typedef Spline2d::KnotVectorType KnotVectorType;
const Eigen::DenseIndex numPoints = 100;
const unsigned int dimension = 2;
const unsigned int degree = 3;
ArrayXXd points = ArrayXXd::Random(dimension, numPoints);
KnotVectorType knots;
Eigen::ChordLengths(points, knots);
ArrayXXd derivatives = ArrayXXd::Random(dimension, numPoints);
VectorXd derivativeIndices(numPoints);
for (Eigen::DenseIndex i = 0; i < numPoints; ++i)
derivativeIndices(i) = static_cast<double>(i);
const Spline2d spline = SplineFitting<Spline2d>::InterpolateWithDerivatives(
points, derivatives, derivativeIndices, degree);
for (Eigen::DenseIndex i = 0; i < points.cols(); ++i)
{
PointType point = spline(knots(i));
PointType referencePoint = points.col(i);
VERIFY_IS_APPROX(point, referencePoint);
PointType derivative = spline.derivatives(knots(i), 1).col(1);
PointType referenceDerivative = derivatives.col(i);
VERIFY_IS_APPROX(derivative, referenceDerivative);
}
}
void test_splines()
{
for (int i = 0; i < g_repeat; ++i)
{
CALL_SUBTEST( eval_spline3d() );
CALL_SUBTEST( eval_spline3d_onbrks() );
CALL_SUBTEST( eval_closed_spline2d() );
CALL_SUBTEST( check_global_interpolation2d() );
CALL_SUBTEST( check_global_interpolation_with_derivatives2d() );
}
}