mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
258 lines
9.7 KiB
C++
258 lines
9.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
template <typename DataType, int Layout, typename DenseIndex>
|
|
static void test_sycl_simple_argmax(const Eigen::SyclDevice& sycl_device) {
|
|
Tensor<DataType, 3, Layout, DenseIndex> in(Eigen::array<DenseIndex, 3>{{2, 2, 2}});
|
|
Tensor<DenseIndex, 0, Layout, DenseIndex> out_max;
|
|
Tensor<DenseIndex, 0, Layout, DenseIndex> out_min;
|
|
in.setRandom();
|
|
in *= in.constant(100.0);
|
|
in(0, 0, 0) = -1000.0;
|
|
in(1, 1, 1) = 1000.0;
|
|
|
|
std::size_t in_bytes = in.size() * sizeof(DataType);
|
|
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
|
|
|
|
DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
|
DenseIndex* d_out_max = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
|
DenseIndex* d_out_min = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<DataType, 3, Layout, DenseIndex> > gpu_in(d_in,
|
|
Eigen::array<DenseIndex, 3>{{2, 2, 2}});
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_max(d_out_max);
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 0, Layout, DenseIndex> > gpu_out_min(d_out_min);
|
|
sycl_device.memcpyHostToDevice(d_in, in.data(), in_bytes);
|
|
|
|
gpu_out_max.device(sycl_device) = gpu_in.argmax();
|
|
gpu_out_min.device(sycl_device) = gpu_in.argmin();
|
|
|
|
sycl_device.memcpyDeviceToHost(out_max.data(), d_out_max, out_bytes);
|
|
sycl_device.memcpyDeviceToHost(out_min.data(), d_out_min, out_bytes);
|
|
|
|
VERIFY_IS_EQUAL(out_max(), 2 * 2 * 2 - 1);
|
|
VERIFY_IS_EQUAL(out_min(), 0);
|
|
|
|
sycl_device.deallocate(d_in);
|
|
sycl_device.deallocate(d_out_max);
|
|
sycl_device.deallocate(d_out_min);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename DenseIndex>
|
|
static void test_sycl_argmax_dim(const Eigen::SyclDevice& sycl_device) {
|
|
DenseIndex sizeDim0 = 9;
|
|
DenseIndex sizeDim1 = 3;
|
|
DenseIndex sizeDim2 = 5;
|
|
DenseIndex sizeDim3 = 7;
|
|
Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
|
|
|
|
std::vector<DenseIndex> dims;
|
|
dims.push_back(sizeDim0);
|
|
dims.push_back(sizeDim1);
|
|
dims.push_back(sizeDim2);
|
|
dims.push_back(sizeDim3);
|
|
for (DenseIndex dim = 0; dim < 4; ++dim) {
|
|
array<DenseIndex, 3> out_shape;
|
|
for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
|
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
|
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
|
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
|
ix[0] = i;
|
|
ix[1] = j;
|
|
ix[2] = k;
|
|
ix[3] = l;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l)
|
|
// = 10.0
|
|
tensor(ix) = (ix[dim] != 0) ? -1.0 : 10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(DataType);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
|
DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
|
|
d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
|
|
|
|
sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
|
|
gpu_out.device(sycl_device) = gpu_in.argmax(dim);
|
|
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
|
|
|
VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
|
|
size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
sycl_device.synchronize();
|
|
|
|
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
|
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
|
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
|
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
|
ix[0] = i;
|
|
ix[1] = j;
|
|
ix[2] = k;
|
|
ix[3] = l;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
|
tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? -1.0 : 20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
|
|
gpu_out.device(sycl_device) = gpu_in.argmax(dim);
|
|
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
sycl_device.deallocate(d_in);
|
|
sycl_device.deallocate(d_out);
|
|
}
|
|
}
|
|
|
|
template <typename DataType, int DataLayout, typename DenseIndex>
|
|
static void test_sycl_argmin_dim(const Eigen::SyclDevice& sycl_device) {
|
|
DenseIndex sizeDim0 = 9;
|
|
DenseIndex sizeDim1 = 3;
|
|
DenseIndex sizeDim2 = 5;
|
|
DenseIndex sizeDim3 = 7;
|
|
Tensor<DataType, 4, DataLayout, DenseIndex> tensor(sizeDim0, sizeDim1, sizeDim2, sizeDim3);
|
|
|
|
std::vector<DenseIndex> dims;
|
|
dims.push_back(sizeDim0);
|
|
dims.push_back(sizeDim1);
|
|
dims.push_back(sizeDim2);
|
|
dims.push_back(sizeDim3);
|
|
for (DenseIndex dim = 0; dim < 4; ++dim) {
|
|
array<DenseIndex, 3> out_shape;
|
|
for (DenseIndex d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d + 1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout, DenseIndex> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
|
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
|
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
|
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
|
ix[0] = i;
|
|
ix[1] = j;
|
|
ix[2] = k;
|
|
ix[3] = l;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
|
|
tensor(ix) = (ix[dim] != 0) ? 1.0 : -10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(DataType);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
DataType* d_in = static_cast<DataType*>(sycl_device.allocate(in_bytes));
|
|
DenseIndex* d_out = static_cast<DenseIndex*>(sycl_device.allocate(out_bytes));
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, DenseIndex> > gpu_in(
|
|
d_in, Eigen::array<DenseIndex, 4>{{sizeDim0, sizeDim1, sizeDim2, sizeDim3}});
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout, DenseIndex> > gpu_out(d_out, out_shape);
|
|
|
|
sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
|
|
gpu_out.device(sycl_device) = gpu_in.argmin(dim);
|
|
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
|
|
|
VERIFY_IS_EQUAL(static_cast<size_t>(tensor_arg.size()),
|
|
size_t(sizeDim0 * sizeDim1 * sizeDim2 * sizeDim3 / tensor.dimension(dim)));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
sycl_device.synchronize();
|
|
|
|
for (DenseIndex i = 0; i < sizeDim0; ++i) {
|
|
for (DenseIndex j = 0; j < sizeDim1; ++j) {
|
|
for (DenseIndex k = 0; k < sizeDim2; ++k) {
|
|
for (DenseIndex l = 0; l < sizeDim3; ++l) {
|
|
ix[0] = i;
|
|
ix[1] = j;
|
|
ix[2] = k;
|
|
ix[3] = l;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
|
|
tensor(ix) = (ix[dim] != tensor.dimension(dim) - 1) ? 1.0 : -20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sycl_device.memcpyHostToDevice(d_in, tensor.data(), in_bytes);
|
|
gpu_out.device(sycl_device) = gpu_in.argmin(dim);
|
|
sycl_device.memcpyDeviceToHost(tensor_arg.data(), d_out, out_bytes);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
sycl_device.deallocate(d_in);
|
|
sycl_device.deallocate(d_out);
|
|
}
|
|
}
|
|
|
|
template <typename DataType, typename Device_Selector>
|
|
void sycl_argmax_test_per_device(const Device_Selector& d) {
|
|
QueueInterface queueInterface(d);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
test_sycl_simple_argmax<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_sycl_simple_argmax<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_sycl_argmax_dim<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_sycl_argmax_dim<DataType, RowMajor, int64_t>(sycl_device);
|
|
test_sycl_argmin_dim<DataType, ColMajor, int64_t>(sycl_device);
|
|
test_sycl_argmin_dim<DataType, RowMajor, int64_t>(sycl_device);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_argmax_sycl) {
|
|
for (const auto& device : Eigen::get_sycl_supported_devices()) {
|
|
CALL_SUBTEST(sycl_argmax_test_per_device<float>(device));
|
|
}
|
|
}
|