eigen/bench/benchmark-blocking-sizes.cpp

468 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include <cstdint>
#include <cstdlib>
#include <vector>
#include <fstream>
#include <memory>
bool eigen_use_specific_block_size;
int eigen_block_size_k, eigen_block_size_m, eigen_block_size_n;
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZES eigen_use_specific_block_size
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K eigen_block_size_k
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M eigen_block_size_m
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N eigen_block_size_n
#include <Eigen/Core>
#include <bench/BenchTimer.h>
using namespace Eigen;
using namespace std;
static BenchTimer timer;
// how many times we repeat each measurement.
// measurements are randomly shuffled - we're not doing
// all N identical measurements in a row.
const int measurement_repetitions = 3;
// Timings below this value are too short to be accurate,
// we'll repeat measurements with more iterations until
// we get a timing above that threshold.
const float min_accurate_time = 1e-2f;
// See --min-working-set-size command line parameter.
size_t min_working_set_size = 0;
// range of sizes that we will benchmark (in all 3 K,M,N dimensions)
const size_t maxsize = 2048;
const size_t minsize = 16;
typedef MatrixXf MatrixType;
static_assert((maxsize & (maxsize - 1)) == 0, "maxsize must be a power of two");
static_assert((minsize & (minsize - 1)) == 0, "minsize must be a power of two");
static_assert(maxsize > minsize, "maxsize must be larger than minsize");
static_assert(maxsize < (minsize << 16), "maxsize must be less than (minsize<<16)");
// just a helper to store a triple of K,M,N sizes for matrix product
struct size_triple_t
{
size_t k, m, n;
size_triple_t() : k(0), m(0), n(0) {}
size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
size_triple_t(uint16_t compact)
{
k = 1 << ((compact & 0xf00) >> 8);
m = 1 << ((compact & 0x0f0) >> 4);
n = 1 << ((compact & 0x00f) >> 0);
}
};
uint8_t log2_pot(size_t x) {
size_t l = 0;
while (x >>= 1) l++;
return l;
}
// Convert between size tripes and a compact form fitting in 12 bits
// where each size, which must be a POT, is encoded as its log2, on 4 bits
// so the largest representable size is 2^15 == 32k ... big enough.
uint16_t compact_size_triple(size_t k, size_t m, size_t n)
{
return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
}
uint16_t compact_size_triple(const size_triple_t& t)
{
return compact_size_triple(t.k, t.m, t.n);
}
// A single benchmark. Initially only contains benchmark params.
// Then call run(), which stores the result in the gflops field.
struct benchmark_t
{
uint16_t compact_product_size;
uint16_t compact_block_size;
bool use_default_block_size;
float gflops;
benchmark_t()
: compact_product_size(0)
, compact_block_size(0)
, gflops(0)
, use_default_block_size(false)
{}
benchmark_t(size_t pk, size_t pm, size_t pn,
size_t bk, size_t bm, size_t bn)
: compact_product_size(compact_size_triple(pk, pm, pn))
, compact_block_size(compact_size_triple(bk, bm, bn))
, use_default_block_size(false)
, gflops(0)
{}
benchmark_t(size_t pk, size_t pm, size_t pn)
: compact_product_size(compact_size_triple(pk, pm, pn))
, compact_block_size(0)
, use_default_block_size(true)
, gflops(0)
{}
void run();
};
ostream& operator<<(ostream& s, const benchmark_t& b)
{
s << hex << b.compact_product_size << dec;
if (b.use_default_block_size) {
size_triple_t t(b.compact_product_size);
Index k = t.k, m = t.m, n = t.n;
internal::computeProductBlockingSizes<MatrixType::Scalar, MatrixType::Scalar>(k, m, n);
s << " default(" << k << ", " << m << ", " << n << ")";
} else {
s << " " << hex << b.compact_block_size << dec;
}
s << " " << b.gflops;
return s;
}
// We sort first by increasing benchmark parameters,
// then by decreasing performance.
bool operator<(const benchmark_t& b1, const benchmark_t& b2)
{
return b1.compact_product_size < b2.compact_product_size ||
(b1.compact_product_size == b2.compact_product_size && (
(b1.compact_block_size < b2.compact_block_size || (
b1.compact_block_size == b2.compact_block_size &&
b1.gflops > b2.gflops))));
}
void benchmark_t::run()
{
size_triple_t productsizes(compact_product_size);
if (use_default_block_size) {
eigen_use_specific_block_size = false;
} else {
// feed eigen with our custom blocking params
eigen_use_specific_block_size = true;
size_triple_t blocksizes(compact_block_size);
eigen_block_size_k = blocksizes.k;
eigen_block_size_m = blocksizes.m;
eigen_block_size_n = blocksizes.n;
}
// set up the matrix pool
const size_t combined_three_matrices_sizes =
sizeof(MatrixType::Scalar) *
(productsizes.k * productsizes.m +
productsizes.k * productsizes.n +
productsizes.m * productsizes.n);
// 64 M is large enough that nobody has a cache bigger than that,
// while still being small enough that everybody has this much RAM,
// so conveniently we don't need to special-case platforms here.
const size_t unlikely_large_cache_size = 64 << 20;
const size_t working_set_size =
min_working_set_size ? min_working_set_size : unlikely_large_cache_size;
const size_t matrix_pool_size =
1 + working_set_size / combined_three_matrices_sizes;
MatrixType *lhs = new MatrixType[matrix_pool_size];
MatrixType *rhs = new MatrixType[matrix_pool_size];
MatrixType *dst = new MatrixType[matrix_pool_size];
for (size_t i = 0; i < matrix_pool_size; i++) {
lhs[i] = MatrixType::Zero(productsizes.m, productsizes.k);
rhs[i] = MatrixType::Zero(productsizes.k, productsizes.n);
dst[i] = MatrixType::Zero(productsizes.m, productsizes.n);
}
// main benchmark loop
int iters_at_a_time = 1;
float time_per_iter = 0.0f;
size_t matrix_index = 0;
while (true) {
double starttime = timer.getCpuTime();
for (int i = 0; i < iters_at_a_time; i++) {
dst[matrix_index] = lhs[matrix_index] * rhs[matrix_index];
matrix_index++;
if (matrix_index == matrix_pool_size) {
matrix_index = 0;
}
}
double endtime = timer.getCpuTime();
const float timing = float(endtime - starttime);
if (timing >= min_accurate_time) {
time_per_iter = timing / iters_at_a_time;
break;
}
iters_at_a_time *= 2;
}
delete[] lhs;
delete[] rhs;
delete[] dst;
gflops = 2e-9 * productsizes.k * productsizes.m * productsizes.n / time_per_iter;
}
void print_cpuinfo()
{
#ifdef __linux__
cout << "contents of /proc/cpuinfo:" << endl;
string line;
ifstream cpuinfo("/proc/cpuinfo");
if (cpuinfo.is_open()) {
while (getline(cpuinfo, line)) {
cout << line << endl;
}
cpuinfo.close();
}
cout << endl;
#elif defined __APPLE__
cout << "output of sysctl hw:" << endl;
system("sysctl hw");
cout << endl;
#endif
}
template <typename T>
string type_name()
{
return "unknown";
}
template<>
string type_name<float>()
{
return "float";
}
template<>
string type_name<double>()
{
return "double";
}
struct action_t
{
virtual const char* invokation_name() const { abort(); return nullptr; }
virtual void run() const { abort(); }
virtual ~action_t() {}
};
void show_usage_and_exit(int argc, char* argv[],
const vector<unique_ptr<action_t>>& available_actions)
{
cerr << "usage: " << argv[0] << " <action> [options...]" << endl << endl;
cerr << "available actions:" << endl << endl;
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
cerr << " " << (*it)->invokation_name() << endl;
}
cerr << endl;
cerr << "options:" << endl << endl;
cerr << " --min-working-set-size=N:" << endl;
cerr << " Set the minimum working set size to N bytes." << endl;
cerr << " This is rounded up as needed to a multiple of matrix size." << endl;
cerr << " A larger working set lowers the chance of a warm cache." << endl;
cerr << " The default value 0 means use a large enough working" << endl;
cerr << " set to likely outsize caches." << endl;
cerr << " A value of 1 (that is, 1 byte) would mean don't do anything to" << endl;
cerr << " avoid warm caches." << endl;
exit(1);
}
void run_benchmarks(vector<benchmark_t>& benchmarks)
{
// randomly shuffling benchmarks allows us to get accurate enough progress info,
// as now the cheap/expensive benchmarks are randomly mixed so they average out.
random_shuffle(benchmarks.begin(), benchmarks.end());
// timings here are only used to display progress info.
// Whence the use of real time.
double time_start = timer.getRealTime();
double time_last_progress_update = time_start;
for (size_t i = 0; i < benchmarks.size(); i++) {
// Display progress info on stderr
double time_now = timer.getRealTime();
if (time_now > time_last_progress_update + 1.0f) {
time_last_progress_update = time_now;
float ratio_done = float(i) / benchmarks.size();
cerr.precision(3);
cerr << "Measurements... " << 100.0f * ratio_done
<< " %";
if (i > 10) {
cerr << ", ETA ";
int eta = int(float(time_now - time_start) * (1.0f - ratio_done) / ratio_done);
int eta_remainder = eta;
if (eta_remainder > 3600) {
int hours = eta_remainder / 3600;
cerr << hours << " h ";
eta_remainder -= hours * 3600;
}
if (eta_remainder > 60) {
int minutes = eta_remainder / 60;
cerr << minutes << " min ";
eta_remainder -= minutes * 60;
}
if (eta < 600 && eta_remainder) {
cerr << eta_remainder << " s";
}
}
cerr << " \r" << flush;
}
// This is where we actually run a benchmark!
benchmarks[i].run();
}
// Erase progress info
cerr << " " << endl;
// Sort timings by increasing benchmark parameters, and decreasing gflops.
// The latter is very important. It means that we can ignore all but the first
// benchmark with given parameters.
sort(benchmarks.begin(), benchmarks.end());
// Collect best (i.e. now first) results for each parameter values.
vector<benchmark_t> best_benchmarks;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
if (best_benchmarks.empty() ||
best_benchmarks.back().compact_product_size != it->compact_product_size ||
best_benchmarks.back().compact_block_size != it->compact_block_size)
{
best_benchmarks.push_back(*it);
}
}
// keep and return only the best benchmarks
benchmarks = best_benchmarks;
}
struct measure_all_pot_sizes_action_t : action_t
{
virtual const char* invokation_name() const { return "all-pot-sizes"; }
virtual void run() const
{
vector<benchmark_t> benchmarks;
for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
for (size_t kblock = minsize; kblock <= ksize; kblock *= 2) {
for (size_t mblock = minsize; mblock <= msize; mblock *= 2) {
for (size_t nblock = minsize; nblock <= nsize; nblock *= 2) {
benchmarks.emplace_back(ksize, msize, nsize, kblock, mblock, nblock);
}
}
}
}
}
}
}
run_benchmarks(benchmarks);
cout << "BEGIN MEASUREMENTS ALL POT SIZES" << endl;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
cout << *it << endl;
}
}
};
struct measure_default_sizes_action_t : action_t
{
virtual const char* invokation_name() const { return "default-sizes"; }
virtual void run() const
{
vector<benchmark_t> benchmarks;
for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
benchmarks.emplace_back(ksize, msize, nsize);
}
}
}
}
run_benchmarks(benchmarks);
cout << "BEGIN MEASUREMENTS DEFAULT SIZES" << endl;
for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
cout << *it << endl;
}
}
};
int main(int argc, char* argv[])
{
cout.precision(4);
cerr.precision(4);
vector<unique_ptr<action_t>> available_actions;
available_actions.emplace_back(new measure_all_pot_sizes_action_t);
available_actions.emplace_back(new measure_default_sizes_action_t);
auto action = available_actions.end();
if (argc <= 1) {
show_usage_and_exit(argc, argv, available_actions);
}
for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
if (!strcmp(argv[1], (*it)->invokation_name())) {
action = it;
break;
}
}
if (action == available_actions.end()) {
show_usage_and_exit(argc, argv, available_actions);
}
for (int i = 2; i < argc; i++) {
if (argv[i] == strstr(argv[i], "--min-working-set-size=")) {
const char* equals_sign = strchr(argv[i], '=');
min_working_set_size = strtoul(equals_sign+1, nullptr, 10);
} else {
cerr << "unrecognized option: " << argv[i] << endl << endl;
show_usage_and_exit(argc, argv, available_actions);
}
}
print_cpuinfo();
cout << "benchmark parameters:" << endl;
cout << "pointer size: " << 8*sizeof(void*) << " bits" << endl;
cout << "scalar type: " << type_name<MatrixType::Scalar>() << endl;
cout << "packet size: " << internal::packet_traits<MatrixType::Scalar>::size << endl;
cout << "minsize = " << minsize << endl;
cout << "maxsize = " << maxsize << endl;
cout << "measurement_repetitions = " << measurement_repetitions << endl;
cout << "min_accurate_time = " << min_accurate_time << endl;
cout << "min_working_set_size = " << min_working_set_size;
if (min_working_set_size == 0) {
cout << " (try to outsize caches)";
}
cout << endl << endl;
(*action)->run();
}