eigen/test/triangular.cpp

293 lines
12 KiB
C++

// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifdef EIGEN_TEST_PART_100
# define EIGEN_NO_DEPRECATED_WARNING
#endif
#include "main.h"
template<typename MatrixType> void triangular_deprecated(const MatrixType &m)
{
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1, m2, m3, m4;
m1.setRandom(rows,cols);
m2.setRandom(rows,cols);
m3 = m1; m4 = m2;
// deprecated method:
m1.template triangularView<Eigen::Upper>().swap(m2);
// use this method instead:
m3.template triangularView<Eigen::Upper>().swap(m4.template triangularView<Eigen::Upper>());
VERIFY_IS_APPROX(m1,m3);
VERIFY_IS_APPROX(m2,m4);
// deprecated method:
m1.template triangularView<Eigen::Lower>().swap(m4);
// use this method instead:
m3.template triangularView<Eigen::Lower>().swap(m2.template triangularView<Eigen::Lower>());
VERIFY_IS_APPROX(m1,m3);
VERIFY_IS_APPROX(m2,m4);
}
template<typename MatrixType> void triangular_square(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealScalar largerEps = 10*test_precision<RealScalar>();
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
m4(rows, cols),
r1(rows, cols),
r2(rows, cols);
VectorType v2 = VectorType::Random(rows);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows*cols>1)
{
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = m2.transpose() + m2;
m3 = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().transpose().toDenseMatrix(), m1);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Lower>() = m2.transpose() + m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
m1 = MatrixType::Random(rows, cols);
for (int i=0; i<rows; ++i)
while (numext::abs2(m1(i,i))<RealScalar(1e-1)) m1(i,i) = internal::random<Scalar>();
Transpose<MatrixType> trm4(m4);
// test back and forward substitution with a vector as the rhs
m3 = m1.template triangularView<Upper>();
VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(v2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(v2)), largerEps));
m3 = m1.template triangularView<Upper>();
VERIFY(v2.isApprox(m3 * (m1.template triangularView<Upper>().solve(v2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2)), largerEps));
// test back and forward substitution with a matrix as the rhs
m3 = m1.template triangularView<Upper>();
VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(m2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(m2)), largerEps));
m3 = m1.template triangularView<Upper>();
VERIFY(m2.isApprox(m3 * (m1.template triangularView<Upper>().solve(m2)), largerEps));
m3 = m1.template triangularView<Lower>();
VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2)), largerEps));
// check M * inv(L) using in place API
m4 = m3;
m1.transpose().template triangularView<Eigen::Upper>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Lower>(), m3);
// check M * inv(U) using in place API
m3 = m1.template triangularView<Upper>();
m4 = m3;
m3.transpose().template triangularView<Eigen::Lower>().solveInPlace(trm4);
VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Upper>(), m3);
// check solve with unit diagonal
m3 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isApprox(m3 * (m1.template triangularView<UnitUpper>().solve(m2)), largerEps));
// VERIFY(( m1.template triangularView<Upper>()
// * m2.template triangularView<Upper>()).isUpperTriangular());
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2,m3);
VERIFY_RAISES_STATIC_ASSERT(m1.template triangularView<Eigen::Lower>().swap(m2.template triangularView<Eigen::Upper>()));
m1.setRandom();
m3 = m1.template triangularView<Upper>();
Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> m5(cols, internal::random<int>(1,20)); m5.setRandom();
Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> m6(internal::random<int>(1,20), rows); m6.setRandom();
VERIFY_IS_APPROX(m1.template triangularView<Upper>() * m5, m3*m5);
VERIFY_IS_APPROX(m6*m1.template triangularView<Upper>(), m6*m3);
m1up = m1.template triangularView<Upper>();
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Upper>().toDenseMatrix(), m1up);
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(), m1up.adjoint());
VERIFY_IS_APPROX(m1up.template selfadjointView<Upper>().template triangularView<Lower>().toDenseMatrix(), m1up.adjoint());
VERIFY_IS_APPROX(m1.template selfadjointView<Upper>().diagonal(), m1.diagonal());
m3.setRandom();
const MatrixType& m3c(m3);
VERIFY( is_same_type(m3c.template triangularView<Lower>(),m3.template triangularView<Lower>().template conjugateIf<false>()) );
VERIFY( is_same_type(m3c.template triangularView<Lower>().conjugate(),m3.template triangularView<Lower>().template conjugateIf<true>()) );
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template triangularView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template triangularView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template triangularView<Lower>().toDenseMatrix());
VERIFY( is_same_type(m3c.template selfadjointView<Lower>(),m3.template selfadjointView<Lower>().template conjugateIf<false>()) );
VERIFY( is_same_type(m3c.template selfadjointView<Lower>().conjugate(),m3.template selfadjointView<Lower>().template conjugateIf<true>()) );
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<true>().toDenseMatrix(),
m3.conjugate().template selfadjointView<Lower>().toDenseMatrix());
VERIFY_IS_APPROX(m3.template selfadjointView<Lower>().template conjugateIf<false>().toDenseMatrix(),
m3.template selfadjointView<Lower>().toDenseMatrix());
}
template<typename MatrixType> void triangular_rect(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
m4(rows, cols),
r1(rows, cols),
r2(rows, cols);
MatrixType m1up = m1.template triangularView<Upper>();
MatrixType m2up = m2.template triangularView<Upper>();
if (rows>1 && cols>1)
{
VERIFY(m1up.isUpperTriangular());
VERIFY(m2up.transpose().isLowerTriangular());
VERIFY(!m2.isLowerTriangular());
}
// test overloaded operator+=
r1.setZero();
r2.setZero();
r1.template triangularView<Upper>() += m1;
r2 += m1up;
VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero();
m1.template triangularView<Upper>() = 3 * m2;
m3 = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Upper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<Lower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyUpper>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyUpper>().toDenseMatrix(), m1);
m1.setZero();
m1.template triangularView<StrictlyLower>() = 3 * m2;
VERIFY_IS_APPROX(m3.template triangularView<StrictlyLower>().toDenseMatrix(), m1);
m1.setRandom();
m2 = m1.template triangularView<Upper>();
VERIFY(m2.isUpperTriangular());
VERIFY(!m2.isLowerTriangular());
m2 = m1.template triangularView<StrictlyUpper>();
VERIFY(m2.isUpperTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitUpper>();
VERIFY(m2.isUpperTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<Lower>();
VERIFY(m2.isLowerTriangular());
VERIFY(!m2.isUpperTriangular());
m2 = m1.template triangularView<StrictlyLower>();
VERIFY(m2.isLowerTriangular());
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
m2 = m1.template triangularView<UnitLower>();
VERIFY(m2.isLowerTriangular());
m2.diagonal().array() -= Scalar(1);
VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1)));
// test swap
m1.setOnes();
m2.setZero();
m2.template triangularView<Upper>().swap(m1.template triangularView<Eigen::Upper>());
m3.setZero();
m3.template triangularView<Upper>().setOnes();
VERIFY_IS_APPROX(m2,m3);
}
void bug_159()
{
Matrix3d m = Matrix3d::Random().triangularView<Lower>();
EIGEN_UNUSED_VARIABLE(m)
}
EIGEN_DECLARE_TEST(triangular)
{
int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE,20);
for(int i = 0; i < g_repeat ; i++)
{
int r = internal::random<int>(2,maxsize); TEST_SET_BUT_UNUSED_VARIABLE(r)
int c = internal::random<int>(2,maxsize); TEST_SET_BUT_UNUSED_VARIABLE(c)
CALL_SUBTEST_1( triangular_square(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( triangular_square(Matrix<float, 2, 2>()) );
CALL_SUBTEST_3( triangular_square(Matrix3d()) );
CALL_SUBTEST_4( triangular_square(Matrix<std::complex<float>,8, 8>()) );
CALL_SUBTEST_5( triangular_square(MatrixXcd(r,r)) );
CALL_SUBTEST_6( triangular_square(Matrix<float,Dynamic,Dynamic,RowMajor>(r, r)) );
CALL_SUBTEST_7( triangular_rect(Matrix<float, 4, 5>()) );
CALL_SUBTEST_8( triangular_rect(Matrix<double, 6, 2>()) );
CALL_SUBTEST_9( triangular_rect(MatrixXcf(r, c)) );
CALL_SUBTEST_5( triangular_rect(MatrixXcd(r, c)) );
CALL_SUBTEST_6( triangular_rect(Matrix<float,Dynamic,Dynamic,RowMajor>(r, c)) );
CALL_SUBTEST_100( triangular_deprecated(Matrix<float, 5, 7>()) );
CALL_SUBTEST_100( triangular_deprecated(MatrixXd(r,c)) );
}
CALL_SUBTEST_1( bug_159() );
}