mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
104 lines
2.8 KiB
C++
104 lines
2.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
|
|
|
|
static void test_additions()
|
|
{
|
|
Tensor<std::complex<float>, 1> data1(3);
|
|
Tensor<std::complex<float>, 1> data2(3);
|
|
for (int i = 0; i < 3; ++i) {
|
|
data1(i) = std::complex<float>(i, -i);
|
|
data2(i) = std::complex<float>(i, 7 * i);
|
|
}
|
|
|
|
Tensor<std::complex<float>, 1> sum = data1 + data2;
|
|
for (int i = 0; i < 3; ++i) {
|
|
VERIFY_IS_EQUAL(sum(i), std::complex<float>(2*i, 6*i));
|
|
}
|
|
}
|
|
|
|
|
|
static void test_abs()
|
|
{
|
|
Tensor<std::complex<float>, 1> data1(3);
|
|
Tensor<std::complex<double>, 1> data2(3);
|
|
data1.setRandom();
|
|
data2.setRandom();
|
|
|
|
Tensor<float, 1> abs1 = data1.abs();
|
|
Tensor<double, 1> abs2 = data2.abs();
|
|
for (int i = 0; i < 3; ++i) {
|
|
VERIFY_IS_APPROX(abs1(i), std::abs(data1(i)));
|
|
VERIFY_IS_APPROX(abs2(i), std::abs(data2(i)));
|
|
}
|
|
}
|
|
|
|
|
|
static void test_conjugate()
|
|
{
|
|
Tensor<std::complex<float>, 1> data1(3);
|
|
Tensor<std::complex<double>, 1> data2(3);
|
|
Tensor<int, 1> data3(3);
|
|
data1.setRandom();
|
|
data2.setRandom();
|
|
data3.setRandom();
|
|
|
|
Tensor<std::complex<float>, 1> conj1 = data1.conjugate();
|
|
Tensor<std::complex<double>, 1> conj2 = data2.conjugate();
|
|
Tensor<int, 1> conj3 = data3.conjugate();
|
|
for (int i = 0; i < 3; ++i) {
|
|
VERIFY_IS_APPROX(conj1(i), std::conj(data1(i)));
|
|
VERIFY_IS_APPROX(conj2(i), std::conj(data2(i)));
|
|
VERIFY_IS_APPROX(conj3(i), data3(i));
|
|
}
|
|
}
|
|
|
|
static void test_contractions()
|
|
{
|
|
Tensor<std::complex<float>, 4> t_left(30, 50, 8, 31);
|
|
Tensor<std::complex<float>, 5> t_right(8, 31, 7, 20, 10);
|
|
Tensor<std::complex<float>, 5> t_result(30, 50, 7, 20, 10);
|
|
|
|
t_left.setRandom();
|
|
t_right.setRandom();
|
|
|
|
typedef Map<Matrix<std::complex<float>, Dynamic, Dynamic>> MapXcf;
|
|
MapXcf m_left(t_left.data(), 1500, 248);
|
|
MapXcf m_right(t_right.data(), 248, 1400);
|
|
Matrix<std::complex<float>, Dynamic, Dynamic> m_result(1500, 1400);
|
|
|
|
// This contraction should be equivalent to a regular matrix multiplication
|
|
typedef Tensor<float, 1>::DimensionPair DimPair;
|
|
Eigen::array<DimPair, 2> dims;
|
|
dims[0] = DimPair(2, 0);
|
|
dims[1] = DimPair(3, 1);
|
|
t_result = t_left.contract(t_right, dims);
|
|
m_result = m_left * m_right;
|
|
for (int i = 0; i < t_result.dimensions().TotalSize(); i++) {
|
|
VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]);
|
|
}
|
|
}
|
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_of_complex)
|
|
{
|
|
CALL_SUBTEST(test_additions());
|
|
CALL_SUBTEST(test_abs());
|
|
CALL_SUBTEST(test_conjugate());
|
|
CALL_SUBTEST(test_contractions());
|
|
}
|