eigen/test/sparse_block.cpp

315 lines
13 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
#include "AnnoyingScalar.h"
template <typename T>
std::enable_if_t<(T::Flags & RowMajorBit) == RowMajorBit, typename T::RowXpr> innervec(T& A, Index i) {
return A.row(i);
}
template <typename T>
std::enable_if_t<(T::Flags & RowMajorBit) == 0, typename T::ColXpr> innervec(T& A, Index i) {
return A.col(i);
}
template <typename SparseMatrixType>
void sparse_block(const SparseMatrixType& ref) {
const Index rows = ref.rows();
const Index cols = ref.cols();
const Index inner = ref.innerSize();
const Index outer = ref.outerSize();
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::RealScalar RealScalar;
typedef typename SparseMatrixType::StorageIndex StorageIndex;
double density = (std::max)(8. / (rows * cols), 0.01);
typedef Matrix<Scalar, Dynamic, Dynamic, SparseMatrixType::IsRowMajor ? RowMajor : ColMajor> DenseMatrix;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
typedef Matrix<Scalar, 1, Dynamic> RowDenseVector;
typedef SparseVector<Scalar> SparseVectorType;
Scalar s1 = internal::random<Scalar>();
{
SparseMatrixType m(rows, cols);
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
initSparse<Scalar>(density, refMat, m);
VERIFY_IS_APPROX(m, refMat);
// test InnerIterators and Block expressions
for (int t = 0; t < 10; ++t) {
Index j = internal::random<Index>(0, cols - 2);
Index i = internal::random<Index>(0, rows - 2);
Index w = internal::random<Index>(1, cols - j);
Index h = internal::random<Index>(1, rows - i);
VERIFY_IS_APPROX(m.block(i, j, h, w), refMat.block(i, j, h, w));
for (Index c = 0; c < w; c++) {
VERIFY_IS_APPROX(m.block(i, j, h, w).col(c), refMat.block(i, j, h, w).col(c));
for (Index r = 0; r < h; r++) {
VERIFY_IS_APPROX(m.block(i, j, h, w).col(c).coeff(r), refMat.block(i, j, h, w).col(c).coeff(r));
VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c));
}
}
for (Index r = 0; r < h; r++) {
VERIFY_IS_APPROX(m.block(i, j, h, w).row(r), refMat.block(i, j, h, w).row(r));
for (Index c = 0; c < w; c++) {
VERIFY_IS_APPROX(m.block(i, j, h, w).row(r).coeff(c), refMat.block(i, j, h, w).row(r).coeff(c));
VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c));
}
}
VERIFY_IS_APPROX(m.middleCols(j, w), refMat.middleCols(j, w));
VERIFY_IS_APPROX(m.middleRows(i, h), refMat.middleRows(i, h));
for (Index r = 0; r < h; r++) {
VERIFY_IS_APPROX(m.middleCols(j, w).row(r), refMat.middleCols(j, w).row(r));
VERIFY_IS_APPROX(m.middleRows(i, h).row(r), refMat.middleRows(i, h).row(r));
for (Index c = 0; c < w; c++) {
VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r));
VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c));
VERIFY_IS_APPROX(m.middleCols(j, w).coeff(r, c), refMat.middleCols(j, w).coeff(r, c));
VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c));
if (!numext::is_exactly_zero(m.middleCols(j, w).coeff(r, c))) {
VERIFY_IS_APPROX(m.middleCols(j, w).coeffRef(r, c), refMat.middleCols(j, w).coeff(r, c));
}
if (!numext::is_exactly_zero(m.middleRows(i, h).coeff(r, c))) {
VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c));
}
}
}
for (Index c = 0; c < w; c++) {
VERIFY_IS_APPROX(m.middleCols(j, w).col(c), refMat.middleCols(j, w).col(c));
VERIFY_IS_APPROX(m.middleRows(i, h).col(c), refMat.middleRows(i, h).col(c));
}
}
for (Index c = 0; c < cols; c++) {
VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
}
for (Index r = 0; r < rows; r++) {
VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
}
}
// test innerVector()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
SparseMatrixType m2(rows, cols);
initSparse<Scalar>(density, refMat2, m2);
Index j0 = internal::random<Index>(0, outer - 1);
Index j1 = internal::random<Index>(0, outer - 1);
Index r0 = internal::random<Index>(0, rows - 1);
Index c0 = internal::random<Index>(0, cols - 1);
VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2, j0));
VERIFY_IS_APPROX(m2.innerVector(j0) + m2.innerVector(j1), innervec(refMat2, j0) + innervec(refMat2, j1));
m2.innerVector(j0) *= Scalar(2);
innervec(refMat2, j0) *= Scalar(2);
VERIFY_IS_APPROX(m2, refMat2);
m2.row(r0) *= Scalar(3);
refMat2.row(r0) *= Scalar(3);
VERIFY_IS_APPROX(m2, refMat2);
m2.col(c0) *= Scalar(4);
refMat2.col(c0) *= Scalar(4);
VERIFY_IS_APPROX(m2, refMat2);
m2.row(r0) /= Scalar(3);
refMat2.row(r0) /= Scalar(3);
VERIFY_IS_APPROX(m2, refMat2);
m2.col(c0) /= Scalar(4);
refMat2.col(c0) /= Scalar(4);
VERIFY_IS_APPROX(m2, refMat2);
SparseVectorType v1;
VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0) * 4);
VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose() * 4);
SparseMatrixType m3(rows, cols);
m3.reserve(VectorXi::Constant(outer, int(inner / 2)));
for (Index j = 0; j < outer; ++j)
for (Index k = 0; k < (std::min)(j, inner); ++k)
m3.insertByOuterInner(j, k) = internal::convert_index<StorageIndex>(k + 1);
for (Index j = 0; j < (std::min)(outer, inner); ++j) {
VERIFY(j == numext::real(m3.innerVector(j).nonZeros()));
if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
}
m3.makeCompressed();
for (Index j = 0; j < (std::min)(outer, inner); ++j) {
VERIFY(j == numext::real(m3.innerVector(j).nonZeros()));
if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff()));
}
VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros());
// m2.innerVector(j0) = 2*m2.innerVector(j1);
// refMat2.col(j0) = 2*refMat2.col(j1);
// VERIFY_IS_APPROX(m2, refMat2);
}
// test innerVectors()
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
SparseMatrixType m2(rows, cols);
initSparse<Scalar>(density, refMat2, m2);
if (internal::random<float>(0, 1) > 0.5f) m2.makeCompressed();
Index j0 = internal::random<Index>(0, outer - 2);
Index j1 = internal::random<Index>(0, outer - 2);
Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1));
if (SparseMatrixType::IsRowMajor)
VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(j0, 0, n0, cols));
else
VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(0, j0, rows, n0));
if (SparseMatrixType::IsRowMajor)
VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0),
refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0));
else
VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0),
refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0));
VERIFY_IS_APPROX(m2, refMat2);
VERIFY(m2.innerVectors(j0, n0).nonZeros() == m2.transpose().innerVectors(j0, n0).nonZeros());
m2.innerVectors(j0, n0) = m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0);
if (SparseMatrixType::IsRowMajor)
refMat2.middleRows(j0, n0) = (refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)).eval();
else
refMat2.middleCols(j0, n0) = (refMat2.middleCols(j0, n0) + refMat2.middleCols(j1, n0)).eval();
VERIFY_IS_APPROX(m2, refMat2);
}
// test generic blocks
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
SparseMatrixType m2(rows, cols);
initSparse<Scalar>(density, refMat2, m2);
Index j0 = internal::random<Index>(0, outer - 2);
Index j1 = internal::random<Index>(0, outer - 2);
Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1));
if (SparseMatrixType::IsRowMajor)
VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols), refMat2.block(j0, 0, n0, cols));
else
VERIFY_IS_APPROX(m2.block(0, j0, rows, n0), refMat2.block(0, j0, rows, n0));
if (SparseMatrixType::IsRowMajor)
VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols) + m2.block(j1, 0, n0, cols),
refMat2.block(j0, 0, n0, cols) + refMat2.block(j1, 0, n0, cols));
else
VERIFY_IS_APPROX(m2.block(0, j0, rows, n0) + m2.block(0, j1, rows, n0),
refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0));
Index i = internal::random<Index>(0, m2.outerSize() - 1);
if (SparseMatrixType::IsRowMajor) {
m2.innerVector(i) = m2.innerVector(i) * s1;
refMat2.row(i) = refMat2.row(i) * s1;
VERIFY_IS_APPROX(m2, refMat2);
} else {
m2.innerVector(i) = m2.innerVector(i) * s1;
refMat2.col(i) = refMat2.col(i) * s1;
VERIFY_IS_APPROX(m2, refMat2);
}
Index r0 = internal::random<Index>(0, rows - 2);
Index c0 = internal::random<Index>(0, cols - 2);
Index r1 = internal::random<Index>(1, rows - r0);
Index c1 = internal::random<Index>(1, cols - c0);
VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0));
VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0));
VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0));
VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0));
VERIFY_IS_APPROX(m2.block(r0, c0, r1, c1), refMat2.block(r0, c0, r1, c1));
VERIFY_IS_APPROX((2 * m2).block(r0, c0, r1, c1), (2 * refMat2).block(r0, c0, r1, c1));
if (m2.nonZeros() > 0) {
VERIFY_IS_APPROX(m2, refMat2);
SparseMatrixType m3(rows, cols);
DenseMatrix refMat3(rows, cols);
refMat3.setZero();
Index n = internal::random<Index>(1, 10);
for (Index k = 0; k < n; ++k) {
Index o1 = internal::random<Index>(0, outer - 1);
Index o2 = internal::random<Index>(0, outer - 1);
if (SparseMatrixType::IsRowMajor) {
m3.innerVector(o1) = m2.row(o2);
refMat3.row(o1) = refMat2.row(o2);
} else {
m3.innerVector(o1) = m2.col(o2);
refMat3.col(o1) = refMat2.col(o2);
}
if (internal::random<bool>()) m3.makeCompressed();
}
if (m3.nonZeros() > 0) VERIFY_IS_APPROX(m3, refMat3);
}
}
// Explicit inner iterator.
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
SparseMatrixType m2(rows, cols);
initSparse<Scalar>(density, refMat2, m2);
Index j0 = internal::random<Index>(0, outer - 1);
auto v = innervec(m2, j0);
typename decltype(v)::InnerIterator block_iterator(v);
typename SparseMatrixType::InnerIterator matrix_iterator(m2, j0);
while (block_iterator) {
VERIFY_IS_EQUAL(block_iterator.index(), matrix_iterator.index());
++block_iterator;
++matrix_iterator;
}
}
}
EIGEN_DECLARE_TEST(sparse_block) {
for (int i = 0; i < g_repeat; i++) {
int r = Eigen::internal::random<int>(1, 200), c = Eigen::internal::random<int>(1, 200);
if (Eigen::internal::random<int>(0, 4) == 0) {
r = c; // check square matrices in 25% of tries
}
EIGEN_UNUSED_VARIABLE(r + c);
CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(1, 1))));
CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(8, 8))));
CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(r, c))));
CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c))));
CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c))));
CALL_SUBTEST_3((sparse_block(SparseMatrix<double, ColMajor, long int>(r, c))));
CALL_SUBTEST_3((sparse_block(SparseMatrix<double, RowMajor, long int>(r, c))));
r = Eigen::internal::random<int>(1, 100);
c = Eigen::internal::random<int>(1, 100);
if (Eigen::internal::random<int>(0, 4) == 0) {
r = c; // check square matrices in 25% of tries
}
CALL_SUBTEST_4((sparse_block(SparseMatrix<double, ColMajor, short int>(short(r), short(c)))));
CALL_SUBTEST_4((sparse_block(SparseMatrix<double, RowMajor, short int>(short(r), short(c)))));
#ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW
AnnoyingScalar::dont_throw = true;
#endif
CALL_SUBTEST_5((sparse_block(SparseMatrix<AnnoyingScalar>(r, c))));
}
}