eigen/test/product_large.cpp

151 lines
6.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "product.h"
#include <Eigen/LU>
template <typename T>
void test_aliasing() {
int rows = internal::random<int>(1, 12);
int cols = internal::random<int>(1, 12);
typedef Matrix<T, Dynamic, Dynamic> MatrixType;
typedef Matrix<T, Dynamic, 1> VectorType;
VectorType x(cols);
x.setRandom();
VectorType z(x);
VectorType y(rows);
y.setZero();
MatrixType A(rows, cols);
A.setRandom();
// CwiseBinaryOp
VERIFY_IS_APPROX(x = y + A * x, A * z); // OK because "y + A*x" is marked as "assume-aliasing"
x = z;
// CwiseUnaryOp
VERIFY_IS_APPROX(x = T(1.) * (A * x),
A * z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression
x = z;
// VERIFY_IS_APPROX(x = y-A*x, -A*z); // Not OK in 3.3 because x is resized before A*x gets evaluated
x = z;
}
template <int>
void product_large_regressions() {
{
// test a specific issue in DiagonalProduct
int N = 1000000;
VectorXf v = VectorXf::Ones(N);
MatrixXf m = MatrixXf::Ones(N, 3);
m = (v + v).asDiagonal() * m;
VERIFY_IS_APPROX(m, MatrixXf::Constant(N, 3, 2));
}
{
// test deferred resizing in Matrix::operator=
MatrixXf a = MatrixXf::Random(10, 4), b = MatrixXf::Random(4, 10), c = a;
VERIFY_IS_APPROX((a = a * b), (c * b).eval());
}
{
// check the functions to setup blocking sizes compile and do not segfault
// FIXME check they do what they are supposed to do !!
std::ptrdiff_t l1 = internal::random<int>(10000, 20000);
std::ptrdiff_t l2 = internal::random<int>(100000, 200000);
std::ptrdiff_t l3 = internal::random<int>(1000000, 2000000);
setCpuCacheSizes(l1, l2, l3);
VERIFY(l1 == l1CacheSize());
VERIFY(l2 == l2CacheSize());
std::ptrdiff_t k1 = internal::random<int>(10, 100) * 16;
std::ptrdiff_t m1 = internal::random<int>(10, 100) * 16;
std::ptrdiff_t n1 = internal::random<int>(10, 100) * 16;
// only makes sure it compiles fine
internal::computeProductBlockingSizes<float, float, std::ptrdiff_t>(k1, m1, n1, 1);
}
{
// test regression in row-vector by matrix (bad Map type)
MatrixXf mat1(10, 32);
mat1.setRandom();
MatrixXf mat2(32, 32);
mat2.setRandom();
MatrixXf r1 = mat1.row(2) * mat2.transpose();
VERIFY_IS_APPROX(r1, (mat1.row(2) * mat2.transpose()).eval());
MatrixXf r2 = mat1.row(2) * mat2;
VERIFY_IS_APPROX(r2, (mat1.row(2) * mat2).eval());
}
{
Eigen::MatrixXd A(10, 10), B, C;
A.setRandom();
C = A;
for (int k = 0; k < 79; ++k) C = C * A;
B.noalias() =
(((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))) *
(((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) *
((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)));
VERIFY_IS_APPROX(B, C);
}
}
template <int>
void bug_1622() {
typedef Matrix<double, 2, -1, 0, 2, -1> Mat2X;
Mat2X x(2, 2);
x.setRandom();
MatrixXd y(2, 2);
y.setRandom();
const Mat2X K1 = x * y.inverse();
const Matrix2d K2 = x * y.inverse();
VERIFY_IS_APPROX(K1, K2);
}
EIGEN_DECLARE_TEST(product_large) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(product(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(product(
MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(product(MatrixXd(internal::random<int>(1, 10), internal::random<int>(1, 10))));
CALL_SUBTEST_3(product(
MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_4(product(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_5(product(Matrix<float, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_1(test_aliasing<float>());
CALL_SUBTEST_6(bug_1622<1>());
CALL_SUBTEST_7(product(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_8(product(Matrix<double, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_9(product(Matrix<std::complex<float>, Dynamic, Dynamic, RowMajor>(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_10(product(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_11(product(Matrix<bfloat16, Dynamic, Dynamic, RowMajor>(
internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
}
CALL_SUBTEST_6(product_large_regressions<0>());
// Regression test for bug 714:
#if defined EIGEN_HAS_OPENMP
omp_set_dynamic(1);
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_6(product(Matrix<float, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
}
#endif
}