mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
77 lines
2.9 KiB
C++
77 lines
2.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LU>
|
|
#include <algorithm>
|
|
|
|
template <typename MatrixType>
|
|
void inverse_permutation_4x4() {
|
|
Vector4i indices(0, 1, 2, 3);
|
|
for (int i = 0; i < 24; ++i) {
|
|
MatrixType m = PermutationMatrix<4>(indices);
|
|
MatrixType inv = m.inverse();
|
|
VERIFY_IS_APPROX(m * inv, MatrixType::Identity());
|
|
std::next_permutation(indices.data(), indices.data() + 4);
|
|
}
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void inverse_general_4x4(int repeat) {
|
|
using std::abs;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
double error_sum = 0., error_max = 0.;
|
|
for (int i = 0; i < repeat; ++i) {
|
|
MatrixType m;
|
|
bool is_invertible;
|
|
do {
|
|
m = MatrixType::Random();
|
|
is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible();
|
|
} while (!is_invertible);
|
|
MatrixType inv = m.inverse();
|
|
double error = double((m * inv - MatrixType::Identity()).norm());
|
|
error_sum += error;
|
|
error_max = (std::max)(error_max, error);
|
|
}
|
|
std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
|
|
double error_avg = error_sum / repeat;
|
|
EIGEN_DEBUG_VAR(error_avg);
|
|
EIGEN_DEBUG_VAR(error_max);
|
|
// FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong??
|
|
// FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21.
|
|
VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
|
|
VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
|
|
|
|
{
|
|
int s = 5; // internal::random<int>(4,10);
|
|
int i = 0; // internal::random<int>(0,s-4);
|
|
int j = 0; // internal::random<int>(0,s-4);
|
|
Matrix<Scalar, 5, 5> mat(s, s);
|
|
mat.setRandom();
|
|
MatrixType submat = mat.template block<4, 4>(i, j);
|
|
MatrixType mat_inv = mat.template block<4, 4>(i, j).inverse();
|
|
VERIFY_IS_APPROX(mat_inv, submat.inverse());
|
|
mat.template block<4, 4>(i, j) = submat.inverse();
|
|
VERIFY_IS_APPROX(mat_inv, (mat.template block<4, 4>(i, j)));
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(prec_inverse_4x4) {
|
|
CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
|
|
CALL_SUBTEST_1((inverse_general_4x4<Matrix4f>(200000 * g_repeat)));
|
|
CALL_SUBTEST_1((inverse_general_4x4<Matrix<float, 4, 4, RowMajor> >(200000 * g_repeat)));
|
|
|
|
CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double, 4, 4, RowMajor> >()));
|
|
CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, ColMajor> >(200000 * g_repeat)));
|
|
CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, RowMajor> >(200000 * g_repeat)));
|
|
|
|
CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
|
|
CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
|
|
}
|