mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
236 lines
8.6 KiB
C++
236 lines
8.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/LU>
|
|
#include "solverbase.h"
|
|
using namespace std;
|
|
|
|
template <typename MatrixType>
|
|
typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) {
|
|
return m.cwiseAbs().colwise().sum().maxCoeff();
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void lu_non_invertible() {
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
/* this test covers the following files:
|
|
LU.h
|
|
*/
|
|
Index rows, cols, cols2;
|
|
if (MatrixType::RowsAtCompileTime == Dynamic) {
|
|
rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
|
|
} else {
|
|
rows = MatrixType::RowsAtCompileTime;
|
|
}
|
|
if (MatrixType::ColsAtCompileTime == Dynamic) {
|
|
cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
|
|
cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE);
|
|
} else {
|
|
cols2 = cols = MatrixType::ColsAtCompileTime;
|
|
}
|
|
|
|
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
|
|
typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
|
|
typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
|
|
typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> CMatrixType;
|
|
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> RMatrixType;
|
|
|
|
Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
|
|
|
|
// The image of the zero matrix should consist of a single (zero) column vector
|
|
VERIFY((MatrixType::Zero(rows, cols).fullPivLu().image(MatrixType::Zero(rows, cols)).cols() == 1));
|
|
|
|
// The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols.
|
|
KernelMatrixType kernel = MatrixType::Zero(rows, cols).fullPivLu().kernel();
|
|
VERIFY((kernel.fullPivLu().isInvertible()));
|
|
|
|
MatrixType m1(rows, cols), m3(rows, cols2);
|
|
CMatrixType m2(cols, cols2);
|
|
createRandomPIMatrixOfRank(rank, rows, cols, m1);
|
|
|
|
FullPivLU<MatrixType> lu;
|
|
|
|
// The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
|
|
// of singular values are either 0 or 1.
|
|
// So it's not clear at all that the epsilon should play any role there.
|
|
lu.setThreshold(RealScalar(0.01));
|
|
lu.compute(m1);
|
|
|
|
MatrixType u(rows, cols);
|
|
u = lu.matrixLU().template triangularView<Upper>();
|
|
RMatrixType l = RMatrixType::Identity(rows, rows);
|
|
l.block(0, 0, rows, (std::min)(rows, cols)).template triangularView<StrictlyLower>() =
|
|
lu.matrixLU().block(0, 0, rows, (std::min)(rows, cols));
|
|
|
|
VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l * u);
|
|
|
|
KernelMatrixType m1kernel = lu.kernel();
|
|
ImageMatrixType m1image = lu.image(m1);
|
|
|
|
VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
|
|
VERIFY(rank == lu.rank());
|
|
VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
|
|
VERIFY(!lu.isInjective());
|
|
VERIFY(!lu.isInvertible());
|
|
VERIFY(!lu.isSurjective());
|
|
VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1);
|
|
VERIFY(m1image.fullPivLu().rank() == rank);
|
|
VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
|
|
|
|
check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2);
|
|
|
|
m2 = CMatrixType::Random(cols, cols2);
|
|
m3 = m1 * m2;
|
|
m2 = CMatrixType::Random(cols, cols2);
|
|
// test that the code, which does resize(), may be applied to an xpr
|
|
m2.block(0, 0, m2.rows(), m2.cols()) = lu.solve(m3);
|
|
VERIFY_IS_APPROX(m3, m1 * m2);
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void lu_invertible() {
|
|
/* this test covers the following files:
|
|
FullPivLU.h
|
|
*/
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
Index size = MatrixType::RowsAtCompileTime;
|
|
if (size == Dynamic) size = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE);
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
FullPivLU<MatrixType> lu;
|
|
lu.setThreshold(RealScalar(0.01));
|
|
do {
|
|
m1 = MatrixType::Random(size, size);
|
|
lu.compute(m1);
|
|
} while (!lu.isInvertible());
|
|
|
|
VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
|
|
VERIFY(0 == lu.dimensionOfKernel());
|
|
VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
|
|
VERIFY(size == lu.rank());
|
|
VERIFY(lu.isInjective());
|
|
VERIFY(lu.isSurjective());
|
|
VERIFY(lu.isInvertible());
|
|
VERIFY(lu.image(m1).fullPivLu().isInvertible());
|
|
|
|
check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size);
|
|
|
|
MatrixType m1_inverse = lu.inverse();
|
|
m3 = MatrixType::Random(size, size);
|
|
m2 = lu.solve(m3);
|
|
VERIFY_IS_APPROX(m2, m1_inverse * m3);
|
|
|
|
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
|
|
const RealScalar rcond_est = lu.rcond();
|
|
// Verify that the estimated condition number is within a factor of 10 of the
|
|
// truth.
|
|
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
|
|
|
// Regression test for Bug 302
|
|
MatrixType m4 = MatrixType::Random(size, size);
|
|
VERIFY_IS_APPROX(lu.solve(m3 * m4), lu.solve(m3) * m4);
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime) {
|
|
/* this test covers the following files:
|
|
PartialPivLU.h
|
|
*/
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
m1.setRandom();
|
|
PartialPivLU<MatrixType> plu(m1);
|
|
|
|
VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
|
|
|
|
check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size);
|
|
|
|
MatrixType m1_inverse = plu.inverse();
|
|
m3 = MatrixType::Random(size, size);
|
|
m2 = plu.solve(m3);
|
|
VERIFY_IS_APPROX(m2, m1_inverse * m3);
|
|
|
|
RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse);
|
|
const RealScalar rcond_est = plu.rcond();
|
|
// Verify that the estimate is within a factor of 10 of the truth.
|
|
VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10);
|
|
}
|
|
|
|
template <typename MatrixType>
|
|
void lu_verify_assert() {
|
|
MatrixType tmp;
|
|
|
|
FullPivLU<MatrixType> lu;
|
|
VERIFY_RAISES_ASSERT(lu.matrixLU())
|
|
VERIFY_RAISES_ASSERT(lu.permutationP())
|
|
VERIFY_RAISES_ASSERT(lu.permutationQ())
|
|
VERIFY_RAISES_ASSERT(lu.kernel())
|
|
VERIFY_RAISES_ASSERT(lu.image(tmp))
|
|
VERIFY_RAISES_ASSERT(lu.solve(tmp))
|
|
VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(lu.determinant())
|
|
VERIFY_RAISES_ASSERT(lu.rank())
|
|
VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
|
|
VERIFY_RAISES_ASSERT(lu.isInjective())
|
|
VERIFY_RAISES_ASSERT(lu.isSurjective())
|
|
VERIFY_RAISES_ASSERT(lu.isInvertible())
|
|
VERIFY_RAISES_ASSERT(lu.inverse())
|
|
|
|
PartialPivLU<MatrixType> plu;
|
|
VERIFY_RAISES_ASSERT(plu.matrixLU())
|
|
VERIFY_RAISES_ASSERT(plu.permutationP())
|
|
VERIFY_RAISES_ASSERT(plu.solve(tmp))
|
|
VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(plu.determinant())
|
|
VERIFY_RAISES_ASSERT(plu.inverse())
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(lu) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(lu_non_invertible<Matrix3f>());
|
|
CALL_SUBTEST_1(lu_invertible<Matrix3f>());
|
|
CALL_SUBTEST_1(lu_verify_assert<Matrix3f>());
|
|
CALL_SUBTEST_1(lu_partial_piv<Matrix3f>());
|
|
|
|
CALL_SUBTEST_2((lu_non_invertible<Matrix<double, 4, 6> >()));
|
|
CALL_SUBTEST_2((lu_verify_assert<Matrix<double, 4, 6> >()));
|
|
CALL_SUBTEST_2(lu_partial_piv<Matrix2d>());
|
|
CALL_SUBTEST_2(lu_partial_piv<Matrix4d>());
|
|
CALL_SUBTEST_2((lu_partial_piv<Matrix<double, 6, 6> >()));
|
|
|
|
CALL_SUBTEST_3(lu_non_invertible<MatrixXf>());
|
|
CALL_SUBTEST_3(lu_invertible<MatrixXf>());
|
|
CALL_SUBTEST_3(lu_verify_assert<MatrixXf>());
|
|
|
|
CALL_SUBTEST_4(lu_non_invertible<MatrixXd>());
|
|
CALL_SUBTEST_4(lu_invertible<MatrixXd>());
|
|
CALL_SUBTEST_4(lu_partial_piv<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
|
|
CALL_SUBTEST_4(lu_verify_assert<MatrixXd>());
|
|
|
|
CALL_SUBTEST_5(lu_non_invertible<MatrixXcf>());
|
|
CALL_SUBTEST_5(lu_invertible<MatrixXcf>());
|
|
CALL_SUBTEST_5(lu_verify_assert<MatrixXcf>());
|
|
|
|
CALL_SUBTEST_6(lu_non_invertible<MatrixXcd>());
|
|
CALL_SUBTEST_6(lu_invertible<MatrixXcd>());
|
|
CALL_SUBTEST_6(lu_partial_piv<MatrixXcd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)));
|
|
CALL_SUBTEST_6(lu_verify_assert<MatrixXcd>());
|
|
|
|
CALL_SUBTEST_7((lu_non_invertible<Matrix<float, Dynamic, 16> >()));
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_9(PartialPivLU<MatrixXf>(10));
|
|
CALL_SUBTEST_9(FullPivLU<MatrixXf>(10, 20););
|
|
}
|
|
}
|