mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
82 lines
3.0 KiB
C++
82 lines
3.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/SVD>
|
|
|
|
template <typename MatrixType, typename JacobiScalar>
|
|
void jacobi(const MatrixType& m = MatrixType()) {
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
|
|
|
|
typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
|
|
|
|
const MatrixType a(MatrixType::Random(rows, cols));
|
|
|
|
JacobiVector v = JacobiVector::Random().normalized();
|
|
JacobiScalar c = v.x(), s = v.y();
|
|
JacobiRotation<JacobiScalar> rot(c, s);
|
|
|
|
{
|
|
Index p = internal::random<Index>(0, rows - 1);
|
|
Index q;
|
|
do {
|
|
q = internal::random<Index>(0, rows - 1);
|
|
} while (q == p);
|
|
|
|
MatrixType b = a;
|
|
b.applyOnTheLeft(p, q, rot);
|
|
VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
|
|
VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
|
|
}
|
|
|
|
{
|
|
Index p = internal::random<Index>(0, cols - 1);
|
|
Index q;
|
|
do {
|
|
q = internal::random<Index>(0, cols - 1);
|
|
} while (q == p);
|
|
|
|
MatrixType b = a;
|
|
b.applyOnTheRight(p, q, rot);
|
|
VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
|
|
VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(jacobi) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1((jacobi<Matrix3f, float>()));
|
|
CALL_SUBTEST_2((jacobi<Matrix4d, double>()));
|
|
CALL_SUBTEST_3((jacobi<Matrix4cf, float>()));
|
|
CALL_SUBTEST_3((jacobi<Matrix4cf, std::complex<float> >()));
|
|
|
|
CALL_SUBTEST_1((jacobi<Matrix<float, 3, 3, RowMajor>, float>()));
|
|
CALL_SUBTEST_2((jacobi<Matrix<double, 4, 4, RowMajor>, double>()));
|
|
CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, float>()));
|
|
CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, std::complex<float> >()));
|
|
|
|
int r = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2),
|
|
c = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2);
|
|
CALL_SUBTEST_4((jacobi<MatrixXf, float>(MatrixXf(r, c))));
|
|
CALL_SUBTEST_5((jacobi<MatrixXcd, double>(MatrixXcd(r, c))));
|
|
CALL_SUBTEST_5((jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r, c))));
|
|
// complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned
|
|
// paths
|
|
CALL_SUBTEST_6((jacobi<MatrixXcf, float>(MatrixXcf(r, c))));
|
|
CALL_SUBTEST_6((jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r, c))));
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(r);
|
|
TEST_SET_BUT_UNUSED_VARIABLE(c);
|
|
}
|
|
}
|