mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-02-17 18:09:55 +08:00
860 lines
36 KiB
C++
860 lines
36 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <vector>
|
|
|
|
#include "main.h"
|
|
|
|
using Eigen::placeholders::all;
|
|
using Eigen::placeholders::last;
|
|
using Eigen::placeholders::lastN;
|
|
using Eigen::placeholders::lastp1;
|
|
#include <array>
|
|
|
|
namespace test {
|
|
typedef std::pair<Index, Index> IndexPair;
|
|
}
|
|
|
|
int encode(Index i, Index j) { return int(i * 100 + j); }
|
|
|
|
test::IndexPair decode(Index ij) { return test::IndexPair(ij / 100, ij % 100); }
|
|
|
|
template <typename T>
|
|
bool match(const T& xpr, std::string ref, std::string str_xpr = "") {
|
|
EIGEN_UNUSED_VARIABLE(str_xpr);
|
|
std::stringstream str;
|
|
str << xpr;
|
|
if (!(str.str() == ref)) std::cout << str_xpr << "\n" << xpr << "\n\n";
|
|
return str.str() == ref;
|
|
}
|
|
|
|
#define MATCH(X, R) match(X, R, #X)
|
|
|
|
template <typename T1, typename T2>
|
|
std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_eq(const T1& a, const T2& b) {
|
|
return (a == b).all();
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
bool is_same_seq(const T1& a, const T2& b) {
|
|
bool ok = a.first() == b.first() && a.size() == b.size() && Index(a.incrObject()) == Index(b.incrObject());
|
|
;
|
|
if (!ok) {
|
|
std::cerr << "seqN(" << a.first() << ", " << a.size() << ", " << Index(a.incrObject()) << ") != ";
|
|
std::cerr << "seqN(" << b.first() << ", " << b.size() << ", " << Index(b.incrObject()) << ")\n";
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_seq_type(const T1& a, const T2& b) {
|
|
return is_same_seq(a, b);
|
|
}
|
|
|
|
#define VERIFY_EQ_INT(A, B) VERIFY_IS_APPROX(int(A), int(B))
|
|
|
|
// C++03 does not allow local or unnamed enums as index
|
|
enum DummyEnum { XX = 0, YY = 1 };
|
|
|
|
void check_indexed_view() {
|
|
Index n = 10;
|
|
|
|
ArrayXd a = ArrayXd::LinSpaced(n, 0, n - 1);
|
|
Array<double, 1, Dynamic> b = a.transpose();
|
|
|
|
ArrayXXi A = ArrayXXi::NullaryExpr(n, n, std::ref(encode));
|
|
|
|
for (Index i = 0; i < n; ++i)
|
|
for (Index j = 0; j < n; ++j) VERIFY(decode(A(i, j)) == test::IndexPair(i, j));
|
|
|
|
Array4i eii(4);
|
|
eii << 3, 1, 6, 5;
|
|
std::vector<int> veci(4);
|
|
Map<ArrayXi>(veci.data(), 4) = eii;
|
|
|
|
VERIFY(MATCH(A(3, seq(9, 3, -1)), "309 308 307 306 305 304 303"));
|
|
|
|
VERIFY(MATCH(A(seqN(2, 5), seq(9, 3, -1)),
|
|
"209 208 207 206 205 204 203\n"
|
|
"309 308 307 306 305 304 303\n"
|
|
"409 408 407 406 405 404 403\n"
|
|
"509 508 507 506 505 504 503\n"
|
|
"609 608 607 606 605 604 603"));
|
|
|
|
VERIFY(MATCH(A(seqN(2, 5), 5),
|
|
"205\n"
|
|
"305\n"
|
|
"405\n"
|
|
"505\n"
|
|
"605"));
|
|
|
|
VERIFY(MATCH(A(seqN(last, 5, -1), seq(2, last)),
|
|
"902 903 904 905 906 907 908 909\n"
|
|
"802 803 804 805 806 807 808 809\n"
|
|
"702 703 704 705 706 707 708 709\n"
|
|
"602 603 604 605 606 607 608 609\n"
|
|
"502 503 504 505 506 507 508 509"));
|
|
|
|
VERIFY(MATCH(A(eii, veci),
|
|
"303 301 306 305\n"
|
|
"103 101 106 105\n"
|
|
"603 601 606 605\n"
|
|
"503 501 506 505"));
|
|
|
|
VERIFY(MATCH(A(eii, all),
|
|
"300 301 302 303 304 305 306 307 308 309\n"
|
|
"100 101 102 103 104 105 106 107 108 109\n"
|
|
"600 601 602 603 604 605 606 607 608 609\n"
|
|
"500 501 502 503 504 505 506 507 508 509"));
|
|
|
|
// take row number 3, and repeat it 5 times
|
|
VERIFY(MATCH(A(seqN(3, 5, 0), all),
|
|
"300 301 302 303 304 305 306 307 308 309\n"
|
|
"300 301 302 303 304 305 306 307 308 309\n"
|
|
"300 301 302 303 304 305 306 307 308 309\n"
|
|
"300 301 302 303 304 305 306 307 308 309\n"
|
|
"300 301 302 303 304 305 306 307 308 309"));
|
|
|
|
VERIFY(MATCH(a(seqN(3, 3), 0), "3\n4\n5"));
|
|
VERIFY(MATCH(a(seq(3, 5)), "3\n4\n5"));
|
|
VERIFY(MATCH(a(seqN(3, 3, 1)), "3\n4\n5"));
|
|
VERIFY(MATCH(a(seqN(5, 3, -1)), "5\n4\n3"));
|
|
|
|
VERIFY(MATCH(b(0, seqN(3, 3)), "3 4 5"));
|
|
VERIFY(MATCH(b(seq(3, 5)), "3 4 5"));
|
|
VERIFY(MATCH(b(seqN(3, 3, 1)), "3 4 5"));
|
|
VERIFY(MATCH(b(seqN(5, 3, -1)), "5 4 3"));
|
|
|
|
VERIFY(MATCH(b(all), "0 1 2 3 4 5 6 7 8 9"));
|
|
VERIFY(MATCH(b(eii), "3 1 6 5"));
|
|
|
|
Array44i B;
|
|
B.setRandom();
|
|
VERIFY((A(seqN(2, 5), 5)).ColsAtCompileTime == 1);
|
|
VERIFY((A(seqN(2, 5), 5)).RowsAtCompileTime == Dynamic);
|
|
VERIFY_EQ_INT((A(seqN(2, 5), 5)).InnerStrideAtCompileTime, A.InnerStrideAtCompileTime);
|
|
VERIFY_EQ_INT((A(seqN(2, 5), 5)).OuterStrideAtCompileTime, A.col(5).OuterStrideAtCompileTime);
|
|
|
|
VERIFY_EQ_INT((A(5, seqN(2, 5))).InnerStrideAtCompileTime, A.row(5).InnerStrideAtCompileTime);
|
|
VERIFY_EQ_INT((A(5, seqN(2, 5))).OuterStrideAtCompileTime, A.row(5).OuterStrideAtCompileTime);
|
|
VERIFY_EQ_INT((B(1, seqN(1, 2))).InnerStrideAtCompileTime, B.row(1).InnerStrideAtCompileTime);
|
|
VERIFY_EQ_INT((B(1, seqN(1, 2))).OuterStrideAtCompileTime, B.row(1).OuterStrideAtCompileTime);
|
|
|
|
VERIFY_EQ_INT((A(seqN(2, 5), seq(1, 3))).InnerStrideAtCompileTime, A.InnerStrideAtCompileTime);
|
|
VERIFY_EQ_INT((A(seqN(2, 5), seq(1, 3))).OuterStrideAtCompileTime, A.OuterStrideAtCompileTime);
|
|
VERIFY_EQ_INT((B(seqN(1, 2), seq(1, 3))).InnerStrideAtCompileTime, B.InnerStrideAtCompileTime);
|
|
VERIFY_EQ_INT((B(seqN(1, 2), seq(1, 3))).OuterStrideAtCompileTime, B.OuterStrideAtCompileTime);
|
|
VERIFY_EQ_INT((A(seqN(2, 5, 2), seq(1, 3, 2))).InnerStrideAtCompileTime, Dynamic);
|
|
VERIFY_EQ_INT((A(seqN(2, 5, 2), seq(1, 3, 2))).OuterStrideAtCompileTime, Dynamic);
|
|
VERIFY_EQ_INT((A(seqN(2, 5, fix<2>), seq(1, 3, fix<3>))).InnerStrideAtCompileTime, 2);
|
|
VERIFY_EQ_INT((A(seqN(2, 5, fix<2>), seq(1, 3, fix<3>))).OuterStrideAtCompileTime, Dynamic);
|
|
VERIFY_EQ_INT((B(seqN(1, 2, fix<2>), seq(1, 3, fix<3>))).InnerStrideAtCompileTime, 2);
|
|
VERIFY_EQ_INT((B(seqN(1, 2, fix<2>), seq(1, 3, fix<3>))).OuterStrideAtCompileTime, 3 * 4);
|
|
|
|
VERIFY_EQ_INT((A(seqN(2, fix<5>), seqN(1, fix<3>))).RowsAtCompileTime, 5);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<5>), seqN(1, fix<3>))).ColsAtCompileTime, 3);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<5>(5)), seqN(1, fix<3>(3)))).RowsAtCompileTime, 5);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<5>(5)), seqN(1, fix<3>(3)))).ColsAtCompileTime, 3);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).RowsAtCompileTime, Dynamic);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).ColsAtCompileTime, Dynamic);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).rows(), 5);
|
|
VERIFY_EQ_INT((A(seqN(2, fix<Dynamic>(5)), seqN(1, fix<Dynamic>(3)))).cols(), 3);
|
|
|
|
VERIFY(is_same_seq_type(seqN(2, 5, fix<-1>), seqN(2, 5, fix<-1>(-1))));
|
|
VERIFY(is_same_seq_type(seqN(2, 5), seqN(2, 5, fix<1>(1))));
|
|
VERIFY(is_same_seq_type(seqN(2, 5, 3), seqN(2, 5, fix<DynamicIndex>(3))));
|
|
VERIFY(is_same_seq_type(seq(2, 7, fix<3>), seqN(2, 2, fix<3>)));
|
|
VERIFY(is_same_seq_type(seqN(2, fix<Dynamic>(5), 3), seqN(2, 5, fix<DynamicIndex>(3))));
|
|
VERIFY(is_same_seq_type(seqN(2, fix<5>(5), fix<-2>), seqN(2, fix<5>, fix<-2>())));
|
|
|
|
VERIFY(is_same_seq_type(seq(2, fix<5>), seqN(2, 4)));
|
|
VERIFY(is_same_seq_type(seq(fix<2>, fix<5>), seqN(fix<2>, fix<4>)));
|
|
VERIFY(is_same_seq(seqN(2, std::integral_constant<int, 5>(), std::integral_constant<int, -2>()),
|
|
seqN(2, fix<5>, fix<-2>())));
|
|
VERIFY(is_same_seq(
|
|
seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>(), std::integral_constant<int, 2>()),
|
|
seq(fix<1>, fix<5>, fix<2>())));
|
|
VERIFY(is_same_seq_type(seqN(2, std::integral_constant<int, 5>(), std::integral_constant<int, -2>()),
|
|
seqN(2, fix<5>, fix<-2>())));
|
|
VERIFY(is_same_seq_type(
|
|
seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>(), std::integral_constant<int, 2>()),
|
|
seq(fix<1>, fix<5>, fix<2>())));
|
|
|
|
VERIFY(is_same_seq_type(seqN(2, std::integral_constant<int, 5>()), seqN(2, fix<5>)));
|
|
VERIFY(
|
|
is_same_seq_type(seq(std::integral_constant<int, 1>(), std::integral_constant<int, 5>()), seq(fix<1>, fix<5>)));
|
|
|
|
VERIFY((A(seqN(2, fix<5>), 5)).RowsAtCompileTime == 5);
|
|
VERIFY((A(4, all)).ColsAtCompileTime == Dynamic);
|
|
VERIFY((A(4, all)).RowsAtCompileTime == 1);
|
|
VERIFY((B(1, all)).ColsAtCompileTime == 4);
|
|
VERIFY((B(1, all)).RowsAtCompileTime == 1);
|
|
VERIFY((B(all, 1)).ColsAtCompileTime == 1);
|
|
VERIFY((B(all, 1)).RowsAtCompileTime == 4);
|
|
|
|
VERIFY(int((A(all, eii)).ColsAtCompileTime) == int(eii.SizeAtCompileTime));
|
|
VERIFY_EQ_INT((A(eii, eii)).Flags & DirectAccessBit, (unsigned int)(0));
|
|
VERIFY_EQ_INT((A(eii, eii)).InnerStrideAtCompileTime, 0);
|
|
VERIFY_EQ_INT((A(eii, eii)).OuterStrideAtCompileTime, 0);
|
|
|
|
VERIFY_IS_APPROX(A(seq(n - 1, 2, -2), seqN(n - 1 - 6, 3, -1)), A(seq(last, 2, fix<-2>), seqN(last - 6, 3, fix<-1>)));
|
|
|
|
VERIFY_IS_APPROX(A(seq(n - 1, 2, -2), seqN(n - 1 - 6, 4)), A(seq(last, 2, -2), seqN(last - 6, 4)));
|
|
VERIFY_IS_APPROX(A(seq(n - 1 - 6, n - 1 - 2), seqN(n - 1 - 6, 4)),
|
|
A(seq(last - 6, last - 2), seqN(6 + last - 6 - 6, 4)));
|
|
VERIFY_IS_APPROX(A(seq((n - 1) / 2, (n) / 2 + 3), seqN(2, 4)),
|
|
A(seq(last / 2, (last + 1) / 2 + 3), seqN(last + 2 - last, 4)));
|
|
VERIFY_IS_APPROX(A(seq(n - 2, 2, -2), seqN(n - 8, 4)), A(seq(lastp1 - 2, 2, -2), seqN(lastp1 - 8, 4)));
|
|
|
|
// Check all combinations of seq:
|
|
VERIFY_IS_APPROX(A(seq(1, n - 1 - 2, 2), seq(1, n - 1 - 2, 2)), A(seq(1, last - 2, 2), seq(1, last - 2, fix<2>)));
|
|
VERIFY_IS_APPROX(A(seq(n - 1 - 5, n - 1 - 2, 2), seq(n - 1 - 5, n - 1 - 2, 2)),
|
|
A(seq(last - 5, last - 2, 2), seq(last - 5, last - 2, fix<2>)));
|
|
VERIFY_IS_APPROX(A(seq(n - 1 - 5, 7, 2), seq(n - 1 - 5, 7, 2)), A(seq(last - 5, 7, 2), seq(last - 5, 7, fix<2>)));
|
|
VERIFY_IS_APPROX(A(seq(1, n - 1 - 2), seq(n - 1 - 5, 7)), A(seq(1, last - 2), seq(last - 5, 7)));
|
|
VERIFY_IS_APPROX(A(seq(n - 1 - 5, n - 1 - 2), seq(n - 1 - 5, n - 1 - 2)),
|
|
A(seq(last - 5, last - 2), seq(last - 5, last - 2)));
|
|
|
|
VERIFY_IS_APPROX(A.col(A.cols() - 1), A(all, last));
|
|
VERIFY_IS_APPROX(A(A.rows() - 2, A.cols() / 2), A(last - 1, lastp1 / 2));
|
|
VERIFY_IS_APPROX(a(a.size() - 2), a(last - 1));
|
|
VERIFY_IS_APPROX(a(a.size() / 2), a((last + 1) / 2));
|
|
|
|
// Check fall-back to Block
|
|
{
|
|
VERIFY(is_same_eq(A.col(0), A(all, 0)));
|
|
VERIFY(is_same_eq(A.row(0), A(0, all)));
|
|
VERIFY(is_same_eq(A.block(0, 0, 2, 2), A(seqN(0, 2), seq(0, 1))));
|
|
VERIFY(is_same_eq(A.middleRows(2, 4), A(seqN(2, 4), all)));
|
|
VERIFY(is_same_eq(A.middleCols(2, 4), A(all, seqN(2, 4))));
|
|
|
|
VERIFY(is_same_eq(A.col(A.cols() - 1), A(all, last)));
|
|
|
|
const ArrayXXi& cA(A);
|
|
VERIFY(is_same_eq(cA.col(0), cA(all, 0)));
|
|
VERIFY(is_same_eq(cA.row(0), cA(0, all)));
|
|
VERIFY(is_same_eq(cA.block(0, 0, 2, 2), cA(seqN(0, 2), seq(0, 1))));
|
|
VERIFY(is_same_eq(cA.middleRows(2, 4), cA(seqN(2, 4), all)));
|
|
VERIFY(is_same_eq(cA.middleCols(2, 4), cA(all, seqN(2, 4))));
|
|
|
|
VERIFY(is_same_eq(a.head(4), a(seq(0, 3))));
|
|
VERIFY(is_same_eq(a.tail(4), a(seqN(last - 3, 4))));
|
|
VERIFY(is_same_eq(a.tail(4), a(seq(lastp1 - 4, last))));
|
|
VERIFY(is_same_eq(a.segment<4>(3), a(seqN(3, fix<4>))));
|
|
}
|
|
|
|
ArrayXXi A1 = A, A2 = ArrayXXi::Random(4, 4);
|
|
ArrayXi range25(4);
|
|
range25 << 3, 2, 4, 5;
|
|
A1(seqN(3, 4), seq(2, 5)) = A2;
|
|
VERIFY_IS_APPROX(A1.block(3, 2, 4, 4), A2);
|
|
A1 = A;
|
|
A2.setOnes();
|
|
A1(seq(6, 3, -1), range25) = A2;
|
|
VERIFY_IS_APPROX(A1.block(3, 2, 4, 4), A2);
|
|
|
|
// check reverse
|
|
{
|
|
VERIFY(is_same_seq_type(seq(3, 7).reverse(), seqN(7, 5, fix<-1>)));
|
|
VERIFY(is_same_seq_type(seq(7, 3, fix<-2>).reverse(), seqN(3, 3, fix<2>)));
|
|
VERIFY_IS_APPROX(a(seqN(2, last / 2).reverse()), a(seqN(2 + (last / 2 - 1) * 1, last / 2, fix<-1>)));
|
|
VERIFY_IS_APPROX(a(seqN(last / 2, fix<4>).reverse()), a(seqN(last / 2, fix<4>)).reverse());
|
|
VERIFY_IS_APPROX(A(seq(last - 5, last - 1, 2).reverse(), seqN(last - 3, 3, fix<-2>).reverse()),
|
|
A(seq(last - 5, last - 1, 2), seqN(last - 3, 3, fix<-2>)).reverse());
|
|
}
|
|
|
|
// check lastN
|
|
VERIFY_IS_APPROX(a(lastN(3)), a.tail(3));
|
|
VERIFY(MATCH(a(lastN(3)), "7\n8\n9"));
|
|
VERIFY_IS_APPROX(a(lastN(fix<3>())), a.tail<3>());
|
|
VERIFY(MATCH(a(lastN(3, 2)), "5\n7\n9"));
|
|
VERIFY(MATCH(a(lastN(3, fix<2>())), "5\n7\n9"));
|
|
VERIFY(a(lastN(fix<3>())).SizeAtCompileTime == 3);
|
|
|
|
VERIFY((A(all, std::array<int, 4>{{1, 3, 2, 4}})).ColsAtCompileTime == 4);
|
|
|
|
VERIFY_IS_APPROX((A(std::array<int, 3>{{1, 3, 5}}, std::array<int, 4>{{9, 6, 3, 0}})),
|
|
A(seqN(1, 3, 2), seqN(9, 4, -3)));
|
|
VERIFY_IS_EQUAL(A(std::array<int, 3>{1, 3, 5}, std::array<int, 4>{3, 1, 6, 5}).RowsAtCompileTime, 3);
|
|
VERIFY_IS_EQUAL(A(std::array<int, 3>{1, 3, 5}, std::array<int, 4>{3, 1, 6, 5}).ColsAtCompileTime, 4);
|
|
|
|
VERIFY_IS_EQUAL(a(std::array<int, 3>{1, 3, 5}).SizeAtCompileTime, 3);
|
|
VERIFY_IS_EQUAL(b(std::array<int, 3>{1, 3, 5}).SizeAtCompileTime, 3);
|
|
|
|
// check different index types (C-style array, STL container, Eigen type)
|
|
{
|
|
Index size = 10;
|
|
ArrayXd r = ArrayXd::Random(size);
|
|
ArrayXi idx = ArrayXi::EqualSpaced(size, 0, 1);
|
|
std::shuffle(idx.begin(), idx.end(), std::random_device());
|
|
|
|
int c_array[3] = {idx[0], idx[1], idx[2]};
|
|
std::vector<int> std_vector{idx[0], idx[1], idx[2]};
|
|
Matrix<int, 3, 1> eigen_matrix{idx[0], idx[1], idx[2]};
|
|
|
|
// non-const access
|
|
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(c_array));
|
|
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(std_vector));
|
|
VERIFY_IS_CWISE_EQUAL(r({idx[0], idx[1], idx[2]}), r(eigen_matrix));
|
|
VERIFY_IS_CWISE_EQUAL(r(std_vector), r(c_array));
|
|
VERIFY_IS_CWISE_EQUAL(r(std_vector), r(eigen_matrix));
|
|
VERIFY_IS_CWISE_EQUAL(r(eigen_matrix), r(c_array));
|
|
|
|
const ArrayXd& r_ref = r;
|
|
// const access
|
|
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(c_array));
|
|
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(std_vector));
|
|
VERIFY_IS_CWISE_EQUAL(r_ref({idx[0], idx[1], idx[2]}), r_ref(eigen_matrix));
|
|
VERIFY_IS_CWISE_EQUAL(r_ref(std_vector), r_ref(c_array));
|
|
VERIFY_IS_CWISE_EQUAL(r_ref(std_vector), r_ref(eigen_matrix));
|
|
VERIFY_IS_CWISE_EQUAL(r_ref(eigen_matrix), r_ref(c_array));
|
|
}
|
|
|
|
{
|
|
Index rows = 8;
|
|
Index cols = 11;
|
|
ArrayXXd R = ArrayXXd::Random(rows, cols);
|
|
ArrayXi r_idx = ArrayXi::EqualSpaced(rows, 0, 1);
|
|
ArrayXi c_idx = ArrayXi::EqualSpaced(cols, 0, 1);
|
|
std::shuffle(r_idx.begin(), r_idx.end(), std::random_device());
|
|
std::shuffle(c_idx.begin(), c_idx.end(), std::random_device());
|
|
|
|
int c_array_rows[3] = {r_idx[0], r_idx[1], r_idx[2]};
|
|
int c_array_cols[4] = {c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
|
|
std::vector<int> std_vector_rows{r_idx[0], r_idx[1], r_idx[2]};
|
|
std::vector<int> std_vector_cols{c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
|
|
Matrix<int, 3, 1> eigen_matrix_rows{r_idx[0], r_idx[1], r_idx[2]};
|
|
Matrix<int, 4, 1> eigen_matrix_cols{c_idx[0], c_idx[1], c_idx[2], c_idx[3]};
|
|
|
|
// non-const access
|
|
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R(c_array_rows, c_array_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R(std_vector_rows, std_vector_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R(eigen_matrix_rows, eigen_matrix_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R(std_vector_rows, std_vector_cols), R(c_array_rows, c_array_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R(std_vector_rows, std_vector_cols), R(eigen_matrix_rows, eigen_matrix_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R(eigen_matrix_rows, eigen_matrix_cols), R(c_array_rows, c_array_cols));
|
|
|
|
const ArrayXXd& R_ref = R;
|
|
// const access
|
|
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R_ref(c_array_rows, c_array_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R_ref(std_vector_rows, std_vector_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R_ref({r_idx[0], r_idx[1], r_idx[2]}, {c_idx[0], c_idx[1], c_idx[2], c_idx[3]}),
|
|
R_ref(eigen_matrix_rows, eigen_matrix_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R_ref(std_vector_rows, std_vector_cols), R_ref(c_array_rows, c_array_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R_ref(std_vector_rows, std_vector_cols), R_ref(eigen_matrix_rows, eigen_matrix_cols));
|
|
VERIFY_IS_CWISE_EQUAL(R_ref(eigen_matrix_rows, eigen_matrix_cols), R_ref(c_array_rows, c_array_cols));
|
|
}
|
|
|
|
// check mat(i,j) with weird types for i and j
|
|
{
|
|
VERIFY_IS_APPROX(A(B.RowsAtCompileTime - 1, 1), A(3, 1));
|
|
VERIFY_IS_APPROX(A(B.RowsAtCompileTime, 1), A(4, 1));
|
|
VERIFY_IS_APPROX(A(B.RowsAtCompileTime - 1, B.ColsAtCompileTime - 1), A(3, 3));
|
|
VERIFY_IS_APPROX(A(B.RowsAtCompileTime, B.ColsAtCompileTime), A(4, 4));
|
|
const Index I_ = 3, J_ = 4;
|
|
VERIFY_IS_APPROX(A(I_, J_), A(3, 4));
|
|
}
|
|
|
|
// check extended block API
|
|
{
|
|
VERIFY(is_same_eq(A.block<3, 4>(1, 1), A.block(1, 1, fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(A.block<3, 4>(1, 1, 3, 4), A.block(1, 1, fix<3>(), fix<4>(4))));
|
|
VERIFY(is_same_eq(A.block<3, Dynamic>(1, 1, 3, 4), A.block(1, 1, fix<3>, 4)));
|
|
VERIFY(is_same_eq(A.block<Dynamic, 4>(1, 1, 3, 4), A.block(1, 1, fix<Dynamic>(3), fix<4>)));
|
|
VERIFY(is_same_eq(A.block(1, 1, 3, 4), A.block(1, 1, fix<Dynamic>(3), fix<Dynamic>(4))));
|
|
|
|
VERIFY(is_same_eq(A.topLeftCorner<3, 4>(), A.topLeftCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(A.bottomLeftCorner<3, 4>(), A.bottomLeftCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(A.bottomRightCorner<3, 4>(), A.bottomRightCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(A.topRightCorner<3, 4>(), A.topRightCorner(fix<3>, fix<4>)));
|
|
|
|
VERIFY(is_same_eq(A.leftCols<3>(), A.leftCols(fix<3>)));
|
|
VERIFY(is_same_eq(A.rightCols<3>(), A.rightCols(fix<3>)));
|
|
VERIFY(is_same_eq(A.middleCols<3>(1), A.middleCols(1, fix<3>)));
|
|
|
|
VERIFY(is_same_eq(A.topRows<3>(), A.topRows(fix<3>)));
|
|
VERIFY(is_same_eq(A.bottomRows<3>(), A.bottomRows(fix<3>)));
|
|
VERIFY(is_same_eq(A.middleRows<3>(1), A.middleRows(1, fix<3>)));
|
|
|
|
VERIFY(is_same_eq(a.segment<3>(1), a.segment(1, fix<3>)));
|
|
VERIFY(is_same_eq(a.head<3>(), a.head(fix<3>)));
|
|
VERIFY(is_same_eq(a.tail<3>(), a.tail(fix<3>)));
|
|
|
|
const ArrayXXi& cA(A);
|
|
VERIFY(is_same_eq(cA.block<Dynamic, 4>(1, 1, 3, 4), cA.block(1, 1, fix<Dynamic>(3), fix<4>)));
|
|
|
|
VERIFY(is_same_eq(cA.topLeftCorner<3, 4>(), cA.topLeftCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(cA.bottomLeftCorner<3, 4>(), cA.bottomLeftCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(cA.bottomRightCorner<3, 4>(), cA.bottomRightCorner(fix<3>, fix<4>)));
|
|
VERIFY(is_same_eq(cA.topRightCorner<3, 4>(), cA.topRightCorner(fix<3>, fix<4>)));
|
|
|
|
VERIFY(is_same_eq(cA.leftCols<3>(), cA.leftCols(fix<3>)));
|
|
VERIFY(is_same_eq(cA.rightCols<3>(), cA.rightCols(fix<3>)));
|
|
VERIFY(is_same_eq(cA.middleCols<3>(1), cA.middleCols(1, fix<3>)));
|
|
|
|
VERIFY(is_same_eq(cA.topRows<3>(), cA.topRows(fix<3>)));
|
|
VERIFY(is_same_eq(cA.bottomRows<3>(), cA.bottomRows(fix<3>)));
|
|
VERIFY(is_same_eq(cA.middleRows<3>(1), cA.middleRows(1, fix<3>)));
|
|
}
|
|
|
|
// Check compilation of enums as index type:
|
|
a(XX) = 1;
|
|
A(XX, YY) = 1;
|
|
// Anonymous enums only work with C++11
|
|
enum { X = 0, Y = 1 };
|
|
a(X) = 1;
|
|
A(X, Y) = 1;
|
|
A(XX, Y) = 1;
|
|
A(X, YY) = 1;
|
|
// check symbolic indices
|
|
a(last) = 1.0;
|
|
A(last, last) = 1;
|
|
// check weird non-const, non-lvalue scenarios
|
|
{
|
|
// in these scenarios, the objects are not declared 'const', and the compiler will atttempt to use the non-const
|
|
// overloads without intervention
|
|
|
|
// non-const map to a const object
|
|
Map<const ArrayXd> a_map(a.data(), a.size());
|
|
Map<const ArrayXXi> A_map(A.data(), A.rows(), A.cols());
|
|
|
|
VERIFY_IS_EQUAL(a_map(last), a.coeff(a.size() - 1));
|
|
VERIFY_IS_EQUAL(A_map(last, last), A.coeff(A.rows() - 1, A.cols() - 1));
|
|
|
|
// non-const expressions that have no modifiable data
|
|
using Op = internal::scalar_constant_op<double>;
|
|
using VectorXpr = CwiseNullaryOp<Op, VectorXd>;
|
|
using MatrixXpr = CwiseNullaryOp<Op, MatrixXd>;
|
|
double constant_val = internal::random<double>();
|
|
Op op(constant_val);
|
|
VectorXpr vectorXpr(10, 1, op);
|
|
MatrixXpr matrixXpr(8, 11, op);
|
|
|
|
VERIFY_IS_EQUAL(vectorXpr.coeff(vectorXpr.size() - 1), vectorXpr(last));
|
|
VERIFY_IS_EQUAL(matrixXpr.coeff(matrixXpr.rows() - 1, matrixXpr.cols() - 1), matrixXpr(last, last));
|
|
}
|
|
|
|
// Check compilation of varying integer types as index types:
|
|
Index i = n / 2;
|
|
short i_short = static_cast<short>(i);
|
|
std::size_t i_sizet(i);
|
|
VERIFY_IS_EQUAL(a(i), a.coeff(i_short));
|
|
VERIFY_IS_EQUAL(a(i), a.coeff(i_sizet));
|
|
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_short, i_short));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_short, i));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i, i_short));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i, i_sizet));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_sizet, i));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(i_sizet, i_short));
|
|
VERIFY_IS_EQUAL(A(i, i), A.coeff(5, i_sizet));
|
|
|
|
// Regression test for Max{Rows,Cols}AtCompileTime
|
|
{
|
|
Matrix3i A3 = Matrix3i::Random();
|
|
ArrayXi ind(5);
|
|
ind << 1, 1, 1, 1, 1;
|
|
VERIFY_IS_EQUAL(A3(ind, ind).eval(), MatrixXi::Constant(5, 5, A3(1, 1)));
|
|
}
|
|
|
|
// Regression for bug 1736
|
|
{
|
|
VERIFY_IS_APPROX(A(all, eii).col(0).eval(), A.col(eii(0)));
|
|
A(all, eii).col(0) = A.col(eii(0));
|
|
}
|
|
|
|
// bug 1815: IndexedView should allow linear access
|
|
{
|
|
VERIFY(MATCH(b(eii)(0), "3"));
|
|
VERIFY(MATCH(a(eii)(0), "3"));
|
|
VERIFY(MATCH(A(1, eii)(0), "103"));
|
|
VERIFY(MATCH(A(eii, 1)(0), "301"));
|
|
VERIFY(MATCH(A(1, all)(1), "101"));
|
|
VERIFY(MATCH(A(all, 1)(1), "101"));
|
|
}
|
|
|
|
// bug #2375: indexing over matrices of dim >128 should compile on gcc
|
|
{
|
|
Matrix<double, 513, 3> large_mat = Matrix<double, 513, 3>::Random();
|
|
std::array<int, 2> test_indices = {0, 1};
|
|
Matrix<double, 513, 2> thin_slice = large_mat(all, test_indices);
|
|
for (int col = 0; col < int(test_indices.size()); ++col)
|
|
for (int row = 0; row < large_mat.rows(); ++row) VERIFY_IS_EQUAL(thin_slice(row, col), large_mat(row, col));
|
|
}
|
|
|
|
// Bug IndexView with a single static row should be RowMajor:
|
|
{
|
|
// A(1, seq(0,2,1)).cwiseAbs().colwise().replicate(2).eval();
|
|
STATIC_CHECK(((internal::evaluator<decltype(A(1, seq(0, 2, 1)))>::Flags & RowMajorBit) == RowMajorBit));
|
|
}
|
|
|
|
// Direct access.
|
|
{
|
|
int rows = 3;
|
|
int row_start = internal::random<int>(0, rows - 1);
|
|
int row_inc = internal::random<int>(1, rows - row_start);
|
|
int row_size = internal::random<int>(1, (rows - row_start) / row_inc);
|
|
auto row_seq = seqN(row_start, row_size, row_inc);
|
|
|
|
int cols = 3;
|
|
int col_start = internal::random<int>(0, cols - 1);
|
|
int col_inc = internal::random<int>(1, cols - col_start);
|
|
int col_size = internal::random<int>(1, (cols - col_start) / col_inc);
|
|
auto col_seq = seqN(col_start, col_size, col_inc);
|
|
|
|
MatrixXd m1 = MatrixXd::Random(rows, cols);
|
|
MatrixXd m2 = MatrixXd::Random(cols, rows);
|
|
VERIFY_IS_APPROX(m1(row_seq, indexing::all) * m2, m1(row_seq, indexing::all).eval() * m2);
|
|
VERIFY_IS_APPROX(m1 * m2(indexing::all, col_seq), m1 * m2(indexing::all, col_seq).eval());
|
|
VERIFY_IS_APPROX(m1(row_seq, col_seq) * m2(col_seq, row_seq),
|
|
m1(row_seq, col_seq).eval() * m2(col_seq, row_seq).eval());
|
|
|
|
VectorXd v1 = VectorXd::Random(cols);
|
|
VERIFY_IS_APPROX(m1(row_seq, col_seq) * v1(col_seq), m1(row_seq, col_seq).eval() * v1(col_seq).eval());
|
|
VERIFY_IS_APPROX(v1(col_seq).transpose() * m2(col_seq, row_seq),
|
|
v1(col_seq).transpose().eval() * m2(col_seq, row_seq).eval());
|
|
}
|
|
}
|
|
|
|
void check_tutorial_examples() {
|
|
constexpr int kRows = 11;
|
|
constexpr int kCols = 21;
|
|
Matrix<double, kRows, kCols> A = Matrix<double, kRows, kCols>::Random();
|
|
Vector<double, kRows> v = Vector<double, kRows>::Random();
|
|
|
|
{
|
|
auto slice = A(seqN(fix<0>, fix<5>, fix<2>), seqN(fix<2>, fix<7>, fix<1>));
|
|
EIGEN_UNUSED_VARIABLE(slice);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), 5);
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), 7);
|
|
}
|
|
{
|
|
auto slice = A(seqN(fix<0>, fix<5>, fix<2>), indexing::all);
|
|
EIGEN_UNUSED_VARIABLE(slice);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), 5);
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), kCols);
|
|
}
|
|
|
|
// Examples from slicing tutorial.
|
|
// Bottom-left corner.
|
|
{
|
|
Index i = 3;
|
|
Index n = 5;
|
|
auto slice = A(seq(i, indexing::last), seqN(0, n));
|
|
auto block = A.bottomLeftCorner(A.rows() - i, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), Dynamic);
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), Dynamic);
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto i = fix<3>;
|
|
auto n = fix<5>;
|
|
auto slice = A(seq(i, indexing::last), seqN(fix<0>, n));
|
|
auto block = A.bottomLeftCorner(fix<kRows> - i, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), A.RowsAtCompileTime - i);
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), n);
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Block starting at i,j of size m,n.
|
|
{
|
|
Index i = 4;
|
|
Index j = 2;
|
|
Index m = 3;
|
|
Index n = 5;
|
|
auto slice = A(seqN(i, m), seqN(j, n));
|
|
auto block = A.block(i, j, m, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto i = fix<4>;
|
|
auto j = fix<2>;
|
|
auto m = fix<3>;
|
|
auto n = fix<5>;
|
|
auto slice = A(seqN(i, m), seqN(j, n));
|
|
auto block = A.block(i, j, m, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Block starting at i0,j0 and ending at i1,j1.
|
|
{
|
|
Index i0 = 4;
|
|
Index i1 = 7;
|
|
Index j0 = 3;
|
|
Index j1 = 5;
|
|
auto slice = A(seq(i0, i1), seq(j0, j1));
|
|
auto block = A.block(i0, j0, i1 - i0 + 1, j1 - j0 + 1);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto i0 = fix<4>;
|
|
auto i1 = fix<7>;
|
|
auto j0 = fix<3>;
|
|
auto j1 = fix<5>;
|
|
auto slice = A(seq(i0, i1), seq(j0, j1));
|
|
auto block = A.block(i0, j0, i1 - i0 + fix<1>, j1 - j0 + fix<1>);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Even columns of A.
|
|
{
|
|
auto slice = A(all, seq(0, last, 2));
|
|
auto block =
|
|
Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<2 * kRows>>(A.data(), kRows, (kCols + 1) / 2);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto slice = A(all, seq(fix<0>, last, fix<2>));
|
|
auto block = Eigen::Map<Eigen::Matrix<double, kRows, (kCols + 1) / 2>, 0, OuterStride<2 * kRows>>(A.data());
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// First n odd rows of A.
|
|
{
|
|
Index n = 3;
|
|
auto slice = A(seqN(1, n, 2), all);
|
|
auto block = Eigen::Map<Eigen::Matrix<double, Dynamic, kCols>, 0, Stride<kRows, 2>>(A.data() + 1, n, kCols);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto n = fix<3>;
|
|
auto slice = A(seqN(fix<1>, n, fix<2>), all);
|
|
auto block = Eigen::Map<Eigen::Matrix<double, 3, kCols>, 0, Stride<kRows, 2>>(A.data() + 1);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// The second-last column.
|
|
{
|
|
auto slice = A(all, last - 1);
|
|
auto block = A.col(A.cols() - 2);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto slice = A(all, last - fix<1>);
|
|
auto block = A.col(fix<kCols> - fix<2>);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// The middle row.
|
|
{
|
|
auto slice = A(last / 2, all);
|
|
auto block = A.row((A.rows() - 1) / 2);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto slice = A(last / fix<2>, all);
|
|
auto block = A.row(fix<(kRows - 1) / 2>);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Last elements of v starting at i.
|
|
{
|
|
Index i = 7;
|
|
auto slice = v(seq(i, last));
|
|
auto block = v.tail(v.size() - i);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto i = fix<7>;
|
|
auto slice = v(seq(i, last));
|
|
auto block = v.tail(fix<kRows> - i);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Last n elements of v.
|
|
{
|
|
Index n = 6;
|
|
auto slice = v(seq(last + 1 - n, last));
|
|
auto block = v.tail(n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto n = fix<6>;
|
|
auto slice = v(seq(last + fix<1> - n, last));
|
|
auto block = v.tail(n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Last n elements of v.
|
|
{
|
|
Index n = 6;
|
|
auto slice = v(lastN(n));
|
|
auto block = v.tail(n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto n = fix<6>;
|
|
auto slice = v(lastN(n));
|
|
auto block = v.tail(n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Bottom-right corner of A of size m times n.
|
|
{
|
|
Index m = 3;
|
|
Index n = 6;
|
|
auto slice = A(lastN(m), lastN(n));
|
|
auto block = A.bottomRightCorner(m, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
auto m = fix<3>;
|
|
auto n = fix<6>;
|
|
auto slice = A(lastN(m), lastN(n));
|
|
auto block = A.bottomRightCorner(m, n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Last n columns with a stride of 3.
|
|
{
|
|
Index n = 4;
|
|
constexpr Index stride = 3;
|
|
auto slice = A(all, lastN(n, stride));
|
|
auto block = Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<stride * kRows>>(
|
|
A.data() + (kCols - 1 - (n - 1) * stride) * kRows, A.rows(), n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
constexpr auto n = fix<4>;
|
|
constexpr auto stride = fix<3>;
|
|
auto slice = A(all, lastN(n, stride));
|
|
auto block = Eigen::Map<Eigen::Matrix<double, kRows, n>, 0, OuterStride<stride * kRows>>(
|
|
A.data() + (kCols - 1 - (n - 1) * stride) * kRows, A.rows(), n);
|
|
VERIFY_IS_EQUAL(int(slice.RowsAtCompileTime), int(block.RowsAtCompileTime));
|
|
VERIFY_IS_EQUAL(int(slice.ColsAtCompileTime), int(block.ColsAtCompileTime));
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
|
|
// Compile time size and increment.
|
|
{
|
|
auto slice1 = v(seq(last - fix<7>, last - fix<2>));
|
|
auto slice2 = v(seqN(last - 7, fix<6>));
|
|
VERIFY_IS_EQUAL(slice1, slice2);
|
|
VERIFY_IS_EQUAL(int(slice1.SizeAtCompileTime), 6);
|
|
VERIFY_IS_EQUAL(int(slice2.SizeAtCompileTime), 6);
|
|
auto slice3 = A(all, seq(fix<0>, last, fix<2>));
|
|
TEST_SET_BUT_UNUSED_VARIABLE(slice3)
|
|
VERIFY_IS_EQUAL(int(slice3.RowsAtCompileTime), kRows);
|
|
VERIFY_IS_EQUAL(int(slice3.ColsAtCompileTime), (kCols + 1) / 2);
|
|
}
|
|
|
|
// Reverse order.
|
|
{
|
|
auto slice = A(all, seq(20, 10, fix<-2>));
|
|
auto block = Eigen::Map<Eigen::Matrix<double, kRows, Dynamic>, 0, OuterStride<-2 * kRows>>(
|
|
A.data() + 20 * kRows, A.rows(), (20 - 10 + 2) / 2);
|
|
VERIFY_IS_EQUAL(slice, block);
|
|
}
|
|
{
|
|
Index n = 10;
|
|
auto slice1 = A(seqN(last, n, fix<-1>), all);
|
|
auto slice2 = A(lastN(n).reverse(), all);
|
|
VERIFY_IS_EQUAL(slice1, slice2);
|
|
}
|
|
|
|
// Array of indices.
|
|
{
|
|
std::vector<int> ind{4, 2, 5, 5, 3};
|
|
auto slice1 = A(all, ind);
|
|
for (size_t i = 0; i < ind.size(); ++i) {
|
|
VERIFY_IS_EQUAL(slice1.col(i), A.col(ind[i]));
|
|
}
|
|
|
|
auto slice2 = A(all, {4, 2, 5, 5, 3});
|
|
VERIFY_IS_EQUAL(slice1, slice2);
|
|
|
|
Eigen::ArrayXi indarray(5);
|
|
indarray << 4, 2, 5, 5, 3;
|
|
auto slice3 = A(all, indarray);
|
|
VERIFY_IS_EQUAL(slice1, slice3);
|
|
}
|
|
|
|
// Custom index list.
|
|
{
|
|
struct pad {
|
|
Index size() const { return out_size; }
|
|
Index operator[](Index i) const { return std::max<Index>(0, i - (out_size - in_size)); }
|
|
Index in_size, out_size;
|
|
};
|
|
|
|
auto slice = A(pad{3, 5}, pad{3, 5});
|
|
Eigen::MatrixXd B = slice;
|
|
VERIFY_IS_EQUAL(B.block(2, 2, 3, 3), A.block(0, 0, 3, 3));
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(indexed_view) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(check_indexed_view());
|
|
}
|
|
CALL_SUBTEST_1(check_tutorial_examples());
|
|
|
|
// static checks of some internals:
|
|
STATIC_CHECK((internal::is_valid_index_type<int>::value));
|
|
STATIC_CHECK((internal::is_valid_index_type<unsigned int>::value));
|
|
STATIC_CHECK((internal::is_valid_index_type<short>::value));
|
|
STATIC_CHECK((internal::is_valid_index_type<std::ptrdiff_t>::value));
|
|
STATIC_CHECK((internal::is_valid_index_type<std::size_t>::value));
|
|
STATIC_CHECK((!internal::valid_indexed_view_overload<int, int>::value));
|
|
STATIC_CHECK((!internal::valid_indexed_view_overload<int, std::ptrdiff_t>::value));
|
|
STATIC_CHECK((!internal::valid_indexed_view_overload<std::ptrdiff_t, int>::value));
|
|
STATIC_CHECK((!internal::valid_indexed_view_overload<std::size_t, int>::value));
|
|
}
|