mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-21 03:11:25 +08:00
121 lines
4.5 KiB
Plaintext
121 lines
4.5 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2021 The Eigen Team.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// The following is an example GPU test.
|
|
|
|
#define EIGEN_USE_GPU
|
|
#include "main.h" // Include the main test utilities.
|
|
|
|
// Define a kernel functor.
|
|
//
|
|
// The kernel must be a POD type and implement operator().
|
|
struct AddKernel {
|
|
// Parameters must be POD or serializable Eigen types (e.g. Matrix,
|
|
// Array). The return value must be a POD or serializable value type.
|
|
template <typename Type1, typename Type2, typename Type3>
|
|
EIGEN_DEVICE_FUNC Type3 operator()(const Type1& A, const Type2& B, Type3& C) const {
|
|
C = A + B; // Populate output parameter.
|
|
Type3 D = A + B; // Populate return value.
|
|
return D;
|
|
}
|
|
};
|
|
|
|
// Define a sub-test that uses the kernel.
|
|
template <typename T>
|
|
void test_add(const T& type) {
|
|
const Index rows = type.rows();
|
|
const Index cols = type.cols();
|
|
|
|
// Create random inputs.
|
|
const T A = T::Random(rows, cols);
|
|
const T B = T::Random(rows, cols);
|
|
T C; // Output parameter.
|
|
|
|
// Create kernel.
|
|
AddKernel add_kernel;
|
|
|
|
// Run add_kernel(A, B, C) via run(...).
|
|
// This will run on the GPU if using a GPU compiler, or CPU otherwise,
|
|
// facilitating generic tests that can run on either.
|
|
T D = run(add_kernel, A, B, C);
|
|
|
|
// Check that both output parameter and return value are correctly populated.
|
|
const T expected = A + B;
|
|
VERIFY_IS_CWISE_EQUAL(C, expected);
|
|
VERIFY_IS_CWISE_EQUAL(D, expected);
|
|
|
|
// In a GPU-only test, we can verify that the CPU and GPU produce the
|
|
// same results.
|
|
T C_cpu, C_gpu;
|
|
T D_cpu = run_on_cpu(add_kernel, A, B, C_cpu); // Runs on CPU.
|
|
T D_gpu = run_on_gpu(add_kernel, A, B, C_gpu); // Runs on GPU.
|
|
VERIFY_IS_CWISE_EQUAL(C_cpu, C_gpu);
|
|
VERIFY_IS_CWISE_EQUAL(D_cpu, D_gpu);
|
|
};
|
|
|
|
struct MultiplyKernel {
|
|
template <typename Type1, typename Type2, typename Type3>
|
|
EIGEN_DEVICE_FUNC Type3 operator()(const Type1& A, const Type2& B, Type3& C) const {
|
|
C = A * B;
|
|
return A * B;
|
|
}
|
|
};
|
|
|
|
template <typename T1, typename T2, typename T3>
|
|
void test_multiply(const T1& type1, const T2& type2, const T3& type3) {
|
|
const T1 A = T1::Random(type1.rows(), type1.cols());
|
|
const T2 B = T2::Random(type2.rows(), type2.cols());
|
|
T3 C;
|
|
|
|
MultiplyKernel multiply_kernel;
|
|
|
|
// The run(...) family of functions uses a memory buffer to transfer data back
|
|
// and forth to and from the device. The size of this buffer is estimated
|
|
// from the size of all input parameters. If the estimated buffer size is
|
|
// not sufficient for transferring outputs from device-to-host, then an
|
|
// explicit buffer size needs to be specified.
|
|
|
|
// 2 outputs of size (A * B). For each matrix output, the buffer will store
|
|
// the number of rows, columns, and the data.
|
|
size_t buffer_capacity_hint = 2 * ( // 2 output parameters
|
|
2 * sizeof(typename T3::Index) // # Rows, # Cols
|
|
+ A.rows() * B.cols() * sizeof(typename T3::Scalar)); // Output data
|
|
|
|
T3 D = run_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C);
|
|
|
|
const T3 expected = A * B;
|
|
VERIFY_IS_CWISE_APPROX(C, expected);
|
|
VERIFY_IS_CWISE_APPROX(D, expected);
|
|
|
|
T3 C_cpu, C_gpu;
|
|
T3 D_cpu = run_on_cpu(multiply_kernel, A, B, C_cpu);
|
|
T3 D_gpu = run_on_gpu_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C_gpu);
|
|
VERIFY_IS_CWISE_APPROX(C_cpu, C_gpu);
|
|
VERIFY_IS_CWISE_APPROX(D_cpu, D_gpu);
|
|
}
|
|
|
|
// Declare the test fixture.
|
|
EIGEN_DECLARE_TEST(gpu_example) {
|
|
// For the number of repeats, call the desired subtests.
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
// Call subtests with different sized/typed inputs.
|
|
CALL_SUBTEST(test_add(Eigen::Vector3f()));
|
|
CALL_SUBTEST(test_add(Eigen::Matrix3d()));
|
|
CALL_SUBTEST(test_add(Eigen::MatrixX<int>(10, 10)));
|
|
|
|
CALL_SUBTEST(test_add(Eigen::Array44f()));
|
|
CALL_SUBTEST(test_add(Eigen::ArrayXd(20)));
|
|
CALL_SUBTEST(test_add(Eigen::ArrayXXi(13, 17)));
|
|
|
|
CALL_SUBTEST(test_multiply(Eigen::Matrix3d(), Eigen::Matrix3d(), Eigen::Matrix3d()));
|
|
CALL_SUBTEST(test_multiply(Eigen::MatrixX<int>(10, 10), Eigen::MatrixX<int>(10, 10), Eigen::MatrixX<int>()));
|
|
CALL_SUBTEST(test_multiply(Eigen::MatrixXf(12, 1), Eigen::MatrixXf(1, 32), Eigen::MatrixXf()));
|
|
}
|
|
}
|