eigen/test/eigensolver_selfadjoint.cpp
2024-04-30 22:28:46 +00:00

271 lines
12 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include "svd_fill.h"
#include <limits>
#include <Eigen/Eigenvalues>
#include <Eigen/SparseCore>
template <typename MatrixType>
void selfadjointeigensolver_essential_check(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
RealScalar eival_eps =
numext::mini<RealScalar>(test_precision<RealScalar>(), NumTraits<Scalar>::dummy_precision() * 20000);
SelfAdjointEigenSolver<MatrixType> eiSymm(m);
VERIFY_IS_EQUAL(eiSymm.info(), Success);
RealScalar scaling = m.cwiseAbs().maxCoeff();
RealScalar unitary_error_factor = RealScalar(16);
if (scaling < (std::numeric_limits<RealScalar>::min)()) {
VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
} else {
VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors()) / scaling,
(eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal()) / scaling);
}
VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
VERIFY(eiSymm.eigenvectors().isUnitary(test_precision<RealScalar>() * unitary_error_factor));
if (m.cols() <= 4) {
SelfAdjointEigenSolver<MatrixType> eiDirect;
eiDirect.computeDirect(m);
VERIFY_IS_EQUAL(eiDirect.info(), Success);
if (!eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps)) {
std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n"
<< "obtained eigenvalues: " << eiDirect.eigenvalues().transpose() << "\n"
<< "diff: " << (eiSymm.eigenvalues() - eiDirect.eigenvalues()).transpose() << "\n"
<< "error (eps): "
<< (eiSymm.eigenvalues() - eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << " ("
<< eival_eps << ")\n";
}
if (scaling < (std::numeric_limits<RealScalar>::min)()) {
VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
} else {
VERIFY_IS_APPROX(eiSymm.eigenvalues() / scaling, eiDirect.eigenvalues() / scaling);
VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors()) / scaling,
(eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal()) / scaling);
VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues() / scaling, eiDirect.eigenvalues() / scaling);
}
VERIFY(eiDirect.eigenvectors().isUnitary(test_precision<RealScalar>() * unitary_error_factor));
}
}
template <typename MatrixType>
void selfadjointeigensolver(const MatrixType& m) {
/* this test covers the following files:
EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
RealScalar largerEps = 10 * test_precision<RealScalar>();
MatrixType a = MatrixType::Random(rows, cols);
MatrixType a1 = MatrixType::Random(rows, cols);
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
MatrixType symmC = symmA;
svd_fill_random(symmA, Symmetric);
symmA.template triangularView<StrictlyUpper>().setZero();
symmC.template triangularView<StrictlyUpper>().setZero();
MatrixType b = MatrixType::Random(rows, cols);
MatrixType b1 = MatrixType::Random(rows, cols);
MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
symmB.template triangularView<StrictlyUpper>().setZero();
CALL_SUBTEST(selfadjointeigensolver_essential_check(symmA));
SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
// generalized eigen pb
GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
// generalized eigen problem Ax = lBx
eiSymmGen.compute(symmC, symmB, Ax_lBx);
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())
.isApprox(symmB.template selfadjointView<Lower>() *
(eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()),
largerEps));
// generalized eigen problem BAx = lx
eiSymmGen.compute(symmC, symmB, BAx_lx);
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
VERIFY(
(symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()))
.isApprox((eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
// generalized eigen problem ABx = lx
eiSymmGen.compute(symmC, symmB, ABx_lx);
VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
VERIFY(
(symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()))
.isApprox((eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
eiSymm.compute(symmC);
MatrixType sqrtSymmA = eiSymm.operatorSqrt();
VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA * sqrtSymmA);
VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>() * eiSymm.operatorInverseSqrt());
MatrixType id = MatrixType::Identity(rows, cols);
VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
eiSymmUninitialized.compute(symmA, false);
VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
// test Tridiagonalization's methods
Tridiagonalization<MatrixType> tridiag(symmC);
VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal());
VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>());
Matrix<RealScalar, Dynamic, Dynamic> T = tridiag.matrixT();
if (rows > 1 && cols > 1) {
// FIXME check that upper and lower part are 0:
// VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero());
}
VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal());
VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>());
VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()),
tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()),
tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
// Test computation of eigenvalues from tridiagonal matrix
if (rows > 1) {
SelfAdjointEigenSolver<MatrixType> eiSymmTridiag;
eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1),
ComputeEigenvectors);
VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues());
VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() *
eiSymmTridiag.eigenvectors().real().transpose());
}
if (rows > 1 && rows < 20) {
// Test matrix with NaN
symmC(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
}
// regression test for bug 1098
{
SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a);
eig.compute(a.adjoint() * a);
}
// regression test for bug 478
{
a.setZero();
SelfAdjointEigenSolver<MatrixType> ei3(a);
VERIFY_IS_EQUAL(ei3.info(), Success);
VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1));
VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity());
}
}
template <int>
void bug_854() {
Matrix3d m;
m << 850.961, 51.966, 0, 51.966, 254.841, 0, 0, 0, 0;
selfadjointeigensolver_essential_check(m);
}
template <int>
void bug_1014() {
Matrix3d m;
m << 0.11111111111111114658, 0, 0, 0, 0.11111111111111109107, 0, 0, 0, 0.11111111111111107719;
selfadjointeigensolver_essential_check(m);
}
template <int>
void bug_1225() {
Matrix3d m1, m2;
m1.setRandom();
m1 = m1 * m1.transpose();
m2 = m1.triangularView<Upper>();
SelfAdjointEigenSolver<Matrix3d> eig1(m1);
SelfAdjointEigenSolver<Matrix3d> eig2(m2.selfadjointView<Upper>());
VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues());
}
template <int>
void bug_1204() {
SparseMatrix<double> A(2, 2);
A.setIdentity();
SelfAdjointEigenSolver<Eigen::SparseMatrix<double> > eig(A);
}
EIGEN_DECLARE_TEST(eigensolver_selfadjoint) {
int s = 0;
for (int i = 0; i < g_repeat; i++) {
// trivial test for 1x1 matrices:
CALL_SUBTEST_1(selfadjointeigensolver(Matrix<float, 1, 1>()));
CALL_SUBTEST_1(selfadjointeigensolver(Matrix<double, 1, 1>()));
CALL_SUBTEST_1(selfadjointeigensolver(Matrix<std::complex<double>, 1, 1>()));
// very important to test 3x3 and 2x2 matrices since we provide special paths for them
CALL_SUBTEST_12(selfadjointeigensolver(Matrix2f()));
CALL_SUBTEST_12(selfadjointeigensolver(Matrix2d()));
CALL_SUBTEST_12(selfadjointeigensolver(Matrix2cd()));
CALL_SUBTEST_13(selfadjointeigensolver(Matrix3f()));
CALL_SUBTEST_13(selfadjointeigensolver(Matrix3d()));
CALL_SUBTEST_13(selfadjointeigensolver(Matrix3cd()));
CALL_SUBTEST_2(selfadjointeigensolver(Matrix4d()));
CALL_SUBTEST_2(selfadjointeigensolver(Matrix4cd()));
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
CALL_SUBTEST_3(selfadjointeigensolver(MatrixXf(s, s)));
CALL_SUBTEST_4(selfadjointeigensolver(MatrixXd(s, s)));
CALL_SUBTEST_5(selfadjointeigensolver(MatrixXcd(s, s)));
CALL_SUBTEST_9(selfadjointeigensolver(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_4(selfadjointeigensolver(MatrixXd(1, 1)));
CALL_SUBTEST_4(selfadjointeigensolver(MatrixXd(2, 2)));
CALL_SUBTEST_5(selfadjointeigensolver(MatrixXcd(1, 1)));
CALL_SUBTEST_5(selfadjointeigensolver(MatrixXcd(2, 2)));
CALL_SUBTEST_6(selfadjointeigensolver(Matrix<double, 1, 1>()));
CALL_SUBTEST_7(selfadjointeigensolver(Matrix<double, 2, 2>()));
}
CALL_SUBTEST_13(bug_854<0>());
CALL_SUBTEST_13(bug_1014<0>());
CALL_SUBTEST_13(bug_1204<0>());
CALL_SUBTEST_13(bug_1225<0>());
// Test problem size constructors
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
TEST_SET_BUT_UNUSED_VARIABLE(s)
}