mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
167 lines
4.4 KiB
C++
167 lines
4.4 KiB
C++
#define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
|
|
#include "sparse_solver.h"
|
|
|
|
#if defined(DEBUG)
|
|
#undef DEBUG
|
|
#endif
|
|
|
|
#include <Eigen/AccelerateSupport>
|
|
|
|
template <typename MatrixType, typename DenseMat>
|
|
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
int rows = internal::random<int>(1, maxRows);
|
|
int cols = internal::random<int>(1, maxCols);
|
|
double density = (std::max)(8.0 / (rows * cols), 0.01);
|
|
|
|
A.resize(rows, cols);
|
|
dA.resize(rows, cols);
|
|
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
|
|
A.makeCompressed();
|
|
return rows;
|
|
}
|
|
|
|
template <typename MatrixType, typename DenseMat>
|
|
int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
int rows = internal::random<int>(1, maxSize);
|
|
int cols = rows;
|
|
double density = (std::max)(8.0 / (rows * cols), 0.01);
|
|
|
|
A.resize(rows, cols);
|
|
dA.resize(rows, cols);
|
|
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
|
|
dA = dA * dA.transpose();
|
|
A = A * A.transpose();
|
|
A.makeCompressed();
|
|
return rows;
|
|
}
|
|
|
|
template <typename Scalar, typename Solver>
|
|
void test_accelerate_ldlt() {
|
|
typedef SparseMatrix<Scalar> MatrixType;
|
|
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
|
|
|
|
MatrixType A;
|
|
Matrix<Scalar, Dynamic, Dynamic> dA;
|
|
|
|
generate_sparse_square_symmetric_problem(A, dA);
|
|
|
|
DenseVector b = DenseVector::Random(A.rows());
|
|
|
|
Solver solver;
|
|
solver.compute(A);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse LDLT factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
DenseVector x = solver.solve(b);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse LDLT factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
// Compare with a dense solver
|
|
DenseVector refX = dA.ldlt().solve(b);
|
|
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
|
}
|
|
|
|
template <typename Scalar, typename Solver>
|
|
void test_accelerate_llt() {
|
|
typedef SparseMatrix<Scalar> MatrixType;
|
|
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
|
|
|
|
MatrixType A;
|
|
Matrix<Scalar, Dynamic, Dynamic> dA;
|
|
|
|
generate_sparse_square_symmetric_problem(A, dA);
|
|
|
|
DenseVector b = DenseVector::Random(A.rows());
|
|
|
|
Solver solver;
|
|
solver.compute(A);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse LLT factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
DenseVector x = solver.solve(b);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse LLT factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
// Compare with a dense solver
|
|
DenseVector refX = dA.llt().solve(b);
|
|
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
|
}
|
|
|
|
template <typename Scalar, typename Solver>
|
|
void test_accelerate_qr() {
|
|
typedef SparseMatrix<Scalar> MatrixType;
|
|
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
|
|
|
|
MatrixType A;
|
|
Matrix<Scalar, Dynamic, Dynamic> dA;
|
|
|
|
generate_sparse_rectangular_problem(A, dA);
|
|
|
|
DenseVector b = DenseVector::Random(A.rows());
|
|
|
|
Solver solver;
|
|
solver.compute(A);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse QR factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
DenseVector x = solver.solve(b);
|
|
|
|
if (solver.info() != Success) {
|
|
std::cerr << "sparse QR factorization failed\n";
|
|
exit(0);
|
|
return;
|
|
}
|
|
|
|
// Compare with a dense solver
|
|
DenseVector refX = dA.colPivHouseholderQr().solve(b);
|
|
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
void run_tests() {
|
|
typedef SparseMatrix<Scalar> MatrixType;
|
|
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >();
|
|
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >();
|
|
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >();
|
|
|
|
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >();
|
|
|
|
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >();
|
|
|
|
test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >();
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(accelerate_support) {
|
|
CALL_SUBTEST_1(run_tests<float>());
|
|
CALL_SUBTEST_2(run_tests<double>());
|
|
}
|