eigen/test/accelerate_support.cpp

167 lines
4.4 KiB
C++

#define EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
#include "sparse_solver.h"
#if defined(DEBUG)
#undef DEBUG
#endif
#include <Eigen/AccelerateSupport>
template <typename MatrixType, typename DenseMat>
int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 300) {
typedef typename MatrixType::Scalar Scalar;
int rows = internal::random<int>(1, maxRows);
int cols = internal::random<int>(1, maxCols);
double density = (std::max)(8.0 / (rows * cols), 0.01);
A.resize(rows, cols);
dA.resize(rows, cols);
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
A.makeCompressed();
return rows;
}
template <typename MatrixType, typename DenseMat>
int generate_sparse_square_symmetric_problem(MatrixType& A, DenseMat& dA, int maxSize = 300) {
typedef typename MatrixType::Scalar Scalar;
int rows = internal::random<int>(1, maxSize);
int cols = rows;
double density = (std::max)(8.0 / (rows * cols), 0.01);
A.resize(rows, cols);
dA.resize(rows, cols);
initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
dA = dA * dA.transpose();
A = A * A.transpose();
A.makeCompressed();
return rows;
}
template <typename Scalar, typename Solver>
void test_accelerate_ldlt() {
typedef SparseMatrix<Scalar> MatrixType;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
MatrixType A;
Matrix<Scalar, Dynamic, Dynamic> dA;
generate_sparse_square_symmetric_problem(A, dA);
DenseVector b = DenseVector::Random(A.rows());
Solver solver;
solver.compute(A);
if (solver.info() != Success) {
std::cerr << "sparse LDLT factorization failed\n";
exit(0);
return;
}
DenseVector x = solver.solve(b);
if (solver.info() != Success) {
std::cerr << "sparse LDLT factorization failed\n";
exit(0);
return;
}
// Compare with a dense solver
DenseVector refX = dA.ldlt().solve(b);
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
}
template <typename Scalar, typename Solver>
void test_accelerate_llt() {
typedef SparseMatrix<Scalar> MatrixType;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
MatrixType A;
Matrix<Scalar, Dynamic, Dynamic> dA;
generate_sparse_square_symmetric_problem(A, dA);
DenseVector b = DenseVector::Random(A.rows());
Solver solver;
solver.compute(A);
if (solver.info() != Success) {
std::cerr << "sparse LLT factorization failed\n";
exit(0);
return;
}
DenseVector x = solver.solve(b);
if (solver.info() != Success) {
std::cerr << "sparse LLT factorization failed\n";
exit(0);
return;
}
// Compare with a dense solver
DenseVector refX = dA.llt().solve(b);
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
}
template <typename Scalar, typename Solver>
void test_accelerate_qr() {
typedef SparseMatrix<Scalar> MatrixType;
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
MatrixType A;
Matrix<Scalar, Dynamic, Dynamic> dA;
generate_sparse_rectangular_problem(A, dA);
DenseVector b = DenseVector::Random(A.rows());
Solver solver;
solver.compute(A);
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
DenseVector x = solver.solve(b);
if (solver.info() != Success) {
std::cerr << "sparse QR factorization failed\n";
exit(0);
return;
}
// Compare with a dense solver
DenseVector refX = dA.colPivHouseholderQr().solve(b);
VERIFY((A * x).isApprox(A * refX, test_precision<Scalar>()));
}
template <typename Scalar>
void run_tests() {
typedef SparseMatrix<Scalar> MatrixType;
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Lower> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Lower> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Lower> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Lower> >();
test_accelerate_ldlt<Scalar, AccelerateLDLT<MatrixType, Upper> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTUnpivoted<MatrixType, Upper> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTSBK<MatrixType, Upper> >();
test_accelerate_ldlt<Scalar, AccelerateLDLTTPP<MatrixType, Upper> >();
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Lower> >();
test_accelerate_llt<Scalar, AccelerateLLT<MatrixType, Upper> >();
test_accelerate_qr<Scalar, AccelerateQR<MatrixType> >();
}
EIGEN_DECLARE_TEST(accelerate_support) {
CALL_SUBTEST_1(run_tests<float>());
CALL_SUBTEST_2(run_tests<double>());
}