mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-11-27 06:30:28 +08:00
190 lines
7.2 KiB
C++
190 lines
7.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// The computeRoots function included in this is based on materials
|
|
// covered by the following copyright and license:
|
|
//
|
|
// Geometric Tools, LLC
|
|
// Copyright (c) 1998-2010
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person or organization
|
|
// obtaining a copy of the software and accompanying documentation covered by
|
|
// this license (the "Software") to use, reproduce, display, distribute,
|
|
// execute, and transmit the Software, and to prepare derivative works of the
|
|
// Software, and to permit third-parties to whom the Software is furnished to
|
|
// do so, all subject to the following:
|
|
//
|
|
// The copyright notices in the Software and this entire statement, including
|
|
// the above license grant, this restriction and the following disclaimer,
|
|
// must be included in all copies of the Software, in whole or in part, and
|
|
// all derivative works of the Software, unless such copies or derivative
|
|
// works are solely in the form of machine-executable object code generated by
|
|
// a source language processor.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
|
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
|
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
// DEALINGS IN THE SOFTWARE.
|
|
|
|
#include <iostream>
|
|
#include <Eigen/Core>
|
|
#include <Eigen/Eigenvalues>
|
|
#include <Eigen/Geometry>
|
|
#include <bench/BenchTimer.h>
|
|
|
|
using namespace Eigen;
|
|
using namespace std;
|
|
|
|
template <typename Matrix, typename Roots>
|
|
inline void computeRoots(const Matrix& m, Roots& roots) {
|
|
typedef typename Matrix::Scalar Scalar;
|
|
const Scalar s_inv3 = 1.0 / 3.0;
|
|
const Scalar s_sqrt3 = std::sqrt(Scalar(3.0));
|
|
|
|
// The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
|
// eigenvalues are the roots to this equation, all guaranteed to be
|
|
// real-valued, because the matrix is symmetric.
|
|
Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) + Scalar(2) * m(0, 1) * m(0, 2) * m(1, 2) - m(0, 0) * m(1, 2) * m(1, 2) -
|
|
m(1, 1) * m(0, 2) * m(0, 2) - m(2, 2) * m(0, 1) * m(0, 1);
|
|
Scalar c1 = m(0, 0) * m(1, 1) - m(0, 1) * m(0, 1) + m(0, 0) * m(2, 2) - m(0, 2) * m(0, 2) + m(1, 1) * m(2, 2) -
|
|
m(1, 2) * m(1, 2);
|
|
Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2);
|
|
|
|
// Construct the parameters used in classifying the roots of the equation
|
|
// and in solving the equation for the roots in closed form.
|
|
Scalar c2_over_3 = c2 * s_inv3;
|
|
Scalar a_over_3 = (c1 - c2 * c2_over_3) * s_inv3;
|
|
if (a_over_3 > Scalar(0)) a_over_3 = Scalar(0);
|
|
|
|
Scalar half_b = Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1));
|
|
|
|
Scalar q = half_b * half_b + a_over_3 * a_over_3 * a_over_3;
|
|
if (q > Scalar(0)) q = Scalar(0);
|
|
|
|
// Compute the eigenvalues by solving for the roots of the polynomial.
|
|
Scalar rho = std::sqrt(-a_over_3);
|
|
Scalar theta = std::atan2(std::sqrt(-q), half_b) * s_inv3;
|
|
Scalar cos_theta = std::cos(theta);
|
|
Scalar sin_theta = std::sin(theta);
|
|
roots(2) = c2_over_3 + Scalar(2) * rho * cos_theta;
|
|
roots(0) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta);
|
|
roots(1) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta);
|
|
}
|
|
|
|
template <typename Matrix, typename Vector>
|
|
void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) {
|
|
typedef typename Matrix::Scalar Scalar;
|
|
// Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
|
// only when at least one matrix entry has magnitude larger than 1.
|
|
|
|
Scalar shift = mat.trace() / 3;
|
|
Matrix scaledMat = mat;
|
|
scaledMat.diagonal().array() -= shift;
|
|
Scalar scale = scaledMat.cwiseAbs() /*.template triangularView<Lower>()*/.maxCoeff();
|
|
scale = std::max(scale, Scalar(1));
|
|
scaledMat /= scale;
|
|
|
|
// Compute the eigenvalues
|
|
// scaledMat.setZero();
|
|
computeRoots(scaledMat, evals);
|
|
|
|
// compute the eigen vectors
|
|
// **here we assume 3 different eigenvalues**
|
|
|
|
// "optimized version" which appears to be slower with gcc!
|
|
// Vector base;
|
|
// Scalar alpha, beta;
|
|
// base << scaledMat(1,0) * scaledMat(2,1),
|
|
// scaledMat(1,0) * scaledMat(2,0),
|
|
// -scaledMat(1,0) * scaledMat(1,0);
|
|
// for(int k=0; k<2; ++k)
|
|
// {
|
|
// alpha = scaledMat(0,0) - evals(k);
|
|
// beta = scaledMat(1,1) - evals(k);
|
|
// evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
|
|
// }
|
|
// evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
|
|
|
|
// // naive version
|
|
// Matrix tmp;
|
|
// tmp = scaledMat;
|
|
// tmp.diagonal().array() -= evals(0);
|
|
// evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
//
|
|
// tmp = scaledMat;
|
|
// tmp.diagonal().array() -= evals(1);
|
|
// evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
//
|
|
// tmp = scaledMat;
|
|
// tmp.diagonal().array() -= evals(2);
|
|
// evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
|
|
// a more stable version:
|
|
if ((evals(2) - evals(0)) <= Eigen::NumTraits<Scalar>::epsilon()) {
|
|
evecs.setIdentity();
|
|
} else {
|
|
Matrix tmp;
|
|
tmp = scaledMat;
|
|
tmp.diagonal().array() -= evals(2);
|
|
evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
|
|
|
tmp = scaledMat;
|
|
tmp.diagonal().array() -= evals(1);
|
|
evecs.col(1) = tmp.row(0).cross(tmp.row(1));
|
|
Scalar n1 = evecs.col(1).norm();
|
|
if (n1 <= Eigen::NumTraits<Scalar>::epsilon())
|
|
evecs.col(1) = evecs.col(2).unitOrthogonal();
|
|
else
|
|
evecs.col(1) /= n1;
|
|
|
|
// make sure that evecs[1] is orthogonal to evecs[2]
|
|
evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
|
|
evecs.col(0) = evecs.col(2).cross(evecs.col(1));
|
|
}
|
|
|
|
// Rescale back to the original size.
|
|
evals *= scale;
|
|
evals.array() += shift;
|
|
}
|
|
|
|
int main() {
|
|
BenchTimer t;
|
|
int tries = 10;
|
|
int rep = 400000;
|
|
typedef Matrix3d Mat;
|
|
typedef Vector3d Vec;
|
|
Mat A = Mat::Random(3, 3);
|
|
A = A.adjoint() * A;
|
|
// Mat Q = A.householderQr().householderQ();
|
|
// A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose();
|
|
|
|
SelfAdjointEigenSolver<Mat> eig(A);
|
|
BENCH(t, tries, rep, eig.compute(A));
|
|
std::cout << "Eigen iterative: " << t.best() << "s\n";
|
|
|
|
BENCH(t, tries, rep, eig.computeDirect(A));
|
|
std::cout << "Eigen direct : " << t.best() << "s\n";
|
|
|
|
Mat evecs;
|
|
Vec evals;
|
|
BENCH(t, tries, rep, eigen33(A, evecs, evals));
|
|
std::cout << "Direct: " << t.best() << "s\n\n";
|
|
|
|
// std::cerr << "Eigenvalue/eigenvector diffs:\n";
|
|
// std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
|
|
// for(int k=0;k<3;++k)
|
|
// if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
|
|
// evecs.col(k) = -evecs.col(k);
|
|
// std::cerr << evecs - eig.eigenvectors() << "\n\n";
|
|
}
|