mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-06 19:10:36 +08:00
314 lines
9.7 KiB
C++
314 lines
9.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "common.h"
|
|
|
|
// y = alpha*A*x + beta*y
|
|
EIGEN_BLAS_FUNC(symv)
|
|
(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px,
|
|
const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) {
|
|
typedef void (*functype)(int, const Scalar *, int, const Scalar *, Scalar *, Scalar);
|
|
using Eigen::ColMajor;
|
|
using Eigen::Lower;
|
|
using Eigen::Upper;
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, ColMajor, Upper, false, false>::run),
|
|
// array index: LO
|
|
(Eigen::internal::selfadjoint_matrix_vector_product<Scalar, int, ColMajor, Lower, false, false>::run),
|
|
};
|
|
|
|
const Scalar *a = reinterpret_cast<const Scalar *>(pa);
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
Scalar beta = *reinterpret_cast<const Scalar *>(pbeta);
|
|
|
|
// check arguments
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*lda < std::max(1, *n))
|
|
info = 5;
|
|
else if (*incx == 0)
|
|
info = 7;
|
|
else if (*incy == 0)
|
|
info = 10;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYMV ", &info);
|
|
|
|
if (*n == 0) return;
|
|
|
|
const Scalar *actual_x = get_compact_vector(x, *n, *incx);
|
|
Scalar *actual_y = get_compact_vector(y, *n, *incy);
|
|
|
|
if (beta != Scalar(1)) {
|
|
if (beta == Scalar(0))
|
|
make_vector(actual_y, *n).setZero();
|
|
else
|
|
make_vector(actual_y, *n) *= beta;
|
|
}
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, a, *lda, actual_x, actual_y, alpha);
|
|
|
|
if (actual_x != x) delete[] actual_x;
|
|
if (actual_y != y) delete[] copy_back(actual_y, y, *n, *incy);
|
|
}
|
|
|
|
// C := alpha*x*x' + C
|
|
EIGEN_BLAS_FUNC(syr)
|
|
(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *pc,
|
|
const int *ldc) {
|
|
typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, const Scalar &);
|
|
using Eigen::ColMajor;
|
|
using Eigen::Lower;
|
|
using Eigen::Upper;
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::selfadjoint_rank1_update<Scalar, int, ColMajor, Upper, false, Conj>::run),
|
|
// array index: LO
|
|
(Eigen::selfadjoint_rank1_update<Scalar, int, ColMajor, Lower, false, Conj>::run),
|
|
};
|
|
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
Scalar *c = reinterpret_cast<Scalar *>(pc);
|
|
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*ldc < std::max(1, *n))
|
|
info = 7;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR ", &info);
|
|
|
|
if (*n == 0 || alpha == Scalar(0)) return;
|
|
|
|
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
|
|
const Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, c, *ldc, x_cpy, x_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
}
|
|
|
|
// C := alpha*x*y' + alpha*y*x' + C
|
|
EIGEN_BLAS_FUNC(syr2)
|
|
(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, const RealScalar *py,
|
|
const int *incy, RealScalar *pc, const int *ldc) {
|
|
typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Upper>::run),
|
|
// array index: LO
|
|
(Eigen::internal::rank2_update_selector<Scalar, int, Eigen::Lower>::run),
|
|
};
|
|
|
|
const Scalar *x = reinterpret_cast<const Scalar *>(px);
|
|
const Scalar *y = reinterpret_cast<const Scalar *>(py);
|
|
Scalar *c = reinterpret_cast<Scalar *>(pc);
|
|
Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
else if (*ldc < std::max(1, *n))
|
|
info = 9;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "SYR2 ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
const Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
const Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, c, *ldc, x_cpy, y_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
|
|
// int code = UPLO(*uplo);
|
|
// if(code>=2 || func[code]==0)
|
|
// return 0;
|
|
|
|
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
|
|
}
|
|
|
|
/** DSBMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n symmetric band matrix, with k super-diagonals.
|
|
*/
|
|
// EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
|
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** DSPMV performs the matrix-vector operation
|
|
*
|
|
* y := alpha*A*x + beta*y,
|
|
*
|
|
* where alpha and beta are scalars, x and y are n element vectors and
|
|
* A is an n by n symmetric matrix, supplied in packed form.
|
|
*
|
|
*/
|
|
// EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar
|
|
// *beta, RealScalar *y, int *incy)
|
|
// {
|
|
// return 1;
|
|
// }
|
|
|
|
/** DSPR performs the symmetric rank 1 operation
|
|
*
|
|
* A := alpha*x*x' + A,
|
|
*
|
|
* where alpha is a real scalar, x is an n element vector and A is an
|
|
* n by n symmetric matrix, supplied in packed form.
|
|
*/
|
|
EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap) {
|
|
typedef void (*functype)(int, Scalar *, const Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Upper, false, false>::run),
|
|
// array index: LO
|
|
(Eigen::internal::selfadjoint_packed_rank1_update<Scalar, int, Eigen::ColMajor, Eigen::Lower, false, false>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *ap = reinterpret_cast<Scalar *>(pap);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "SPR ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, ap, x_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
}
|
|
|
|
/** DSPR2 performs the symmetric rank 2 operation
|
|
*
|
|
* A := alpha*x*y' + alpha*y*x' + A,
|
|
*
|
|
* where alpha is a scalar, x and y are n element vectors and A is an
|
|
* n by n symmetric matrix, supplied in packed form.
|
|
*/
|
|
EIGEN_BLAS_FUNC(spr2)
|
|
(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) {
|
|
typedef void (*functype)(int, Scalar *, const Scalar *, const Scalar *, Scalar);
|
|
static const functype func[2] = {
|
|
// array index: UP
|
|
(Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Upper>::run),
|
|
// array index: LO
|
|
(Eigen::internal::packed_rank2_update_selector<Scalar, int, Eigen::Lower>::run),
|
|
};
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *ap = reinterpret_cast<Scalar *>(pap);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (UPLO(*uplo) == INVALID)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "SPR2 ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *n, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
int code = UPLO(*uplo);
|
|
if (code >= 2 || func[code] == 0) return;
|
|
|
|
func[code](*n, ap, x_cpy, y_cpy, alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|
|
|
|
/** DGER performs the rank 1 operation
|
|
*
|
|
* A := alpha*x*y' + A,
|
|
*
|
|
* where alpha is a scalar, x is an m element vector, y is an n element
|
|
* vector and A is an m by n matrix.
|
|
*/
|
|
EIGEN_BLAS_FUNC(ger)
|
|
(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) {
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
Scalar *a = reinterpret_cast<Scalar *>(pa);
|
|
Scalar alpha = *reinterpret_cast<Scalar *>(palpha);
|
|
|
|
int info = 0;
|
|
if (*m < 0)
|
|
info = 1;
|
|
else if (*n < 0)
|
|
info = 2;
|
|
else if (*incx == 0)
|
|
info = 5;
|
|
else if (*incy == 0)
|
|
info = 7;
|
|
else if (*lda < std::max(1, *m))
|
|
info = 9;
|
|
if (info) return xerbla_(SCALAR_SUFFIX_UP "GER ", &info);
|
|
|
|
if (alpha == Scalar(0)) return;
|
|
|
|
Scalar *x_cpy = get_compact_vector(x, *m, *incx);
|
|
Scalar *y_cpy = get_compact_vector(y, *n, *incy);
|
|
|
|
Eigen::internal::general_rank1_update<Scalar, int, Eigen::ColMajor, false, false>::run(*m, *n, a, *lda, x_cpy, y_cpy,
|
|
alpha);
|
|
|
|
if (x_cpy != x) delete[] x_cpy;
|
|
if (y_cpy != y) delete[] y_cpy;
|
|
}
|