mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-24 19:40:45 +08:00
160 lines
5.7 KiB
C++
160 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "common.h"
|
|
|
|
struct scalar_norm1_op {
|
|
typedef RealScalar result_type;
|
|
inline RealScalar operator()(const Scalar &a) const { return Eigen::numext::norm1(a); }
|
|
};
|
|
namespace Eigen {
|
|
namespace internal {
|
|
template <>
|
|
struct functor_traits<scalar_norm1_op> {
|
|
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
|
|
};
|
|
} // namespace internal
|
|
} // namespace Eigen
|
|
|
|
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
|
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
|
extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(asum))(int *n, RealScalar *px, int *incx) {
|
|
// std::cerr << "__asum " << *n << " " << *incx << "\n";
|
|
Complex *x = reinterpret_cast<Complex *>(px);
|
|
|
|
if (*n <= 0) return 0;
|
|
|
|
if (*incx == 1)
|
|
return make_vector(x, *n).unaryExpr<scalar_norm1_op>().sum();
|
|
else
|
|
return make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
|
|
}
|
|
|
|
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, RealScalar *px, int *incx) {
|
|
if (*n <= 0) return 0;
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
|
|
Eigen::DenseIndex ret;
|
|
if (*incx == 1)
|
|
make_vector(x, *n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
|
|
else
|
|
make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
|
|
return int(ret) + 1;
|
|
}
|
|
|
|
extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, RealScalar *px, int *incx) {
|
|
if (*n <= 0) return 0;
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
|
|
Eigen::DenseIndex ret;
|
|
if (*incx == 1)
|
|
make_vector(x, *n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
|
|
else
|
|
make_vector(x, *n, std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
|
|
return int(ret) + 1;
|
|
}
|
|
|
|
// computes a dot product of a conjugated vector with another vector.
|
|
EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
|
|
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
|
|
Scalar *res = reinterpret_cast<Scalar *>(pres);
|
|
|
|
if (*n <= 0) {
|
|
*res = Scalar(0);
|
|
return;
|
|
}
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
|
|
if (*incx == 1 && *incy == 1)
|
|
*res = (make_vector(x, *n).dot(make_vector(y, *n)));
|
|
else if (*incx > 0 && *incy > 0)
|
|
*res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, *incy)));
|
|
else if (*incx < 0 && *incy > 0)
|
|
*res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, *incy)));
|
|
else if (*incx > 0 && *incy < 0)
|
|
*res = (make_vector(x, *n, *incx).dot(make_vector(y, *n, -*incy).reverse()));
|
|
else if (*incx < 0 && *incy < 0)
|
|
*res = (make_vector(x, *n, -*incx).reverse().dot(make_vector(y, *n, -*incy).reverse()));
|
|
}
|
|
|
|
// computes a vector-vector dot product without complex conjugation.
|
|
EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pres) {
|
|
Scalar *res = reinterpret_cast<Scalar *>(pres);
|
|
|
|
if (*n <= 0) {
|
|
*res = Scalar(0);
|
|
return;
|
|
}
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
|
|
if (*incx == 1 && *incy == 1)
|
|
*res = (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
|
|
else if (*incx > 0 && *incy > 0)
|
|
*res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
|
|
else if (*incx < 0 && *incy > 0)
|
|
*res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
|
|
else if (*incx > 0 && *incy < 0)
|
|
*res = (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
|
|
else if (*incx < 0 && *incy < 0)
|
|
*res = (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
|
|
}
|
|
|
|
extern "C" RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC_NAME(nrm2))(int *n, RealScalar *px, int *incx) {
|
|
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
|
|
if (*n <= 0) return 0;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
|
|
if (*incx == 1) return make_vector(x, *n).stableNorm();
|
|
|
|
return make_vector(x, *n, *incx).stableNorm();
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))
|
|
(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) {
|
|
if (*n <= 0) return;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
Scalar *y = reinterpret_cast<Scalar *>(py);
|
|
RealScalar c = *pc;
|
|
RealScalar s = *ps;
|
|
|
|
StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
|
|
StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));
|
|
|
|
Eigen::Reverse<StridedVectorType> rvx(vx);
|
|
Eigen::Reverse<StridedVectorType> rvy(vy);
|
|
|
|
// TODO implement mixed real-scalar rotations
|
|
if (*incx < 0 && *incy > 0)
|
|
Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s));
|
|
else if (*incx > 0 && *incy < 0)
|
|
Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s));
|
|
else
|
|
Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s));
|
|
}
|
|
|
|
EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
|
|
if (*n <= 0) return;
|
|
|
|
Scalar *x = reinterpret_cast<Scalar *>(px);
|
|
RealScalar alpha = *palpha;
|
|
|
|
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
|
|
|
|
if (*incx == 1)
|
|
make_vector(x, *n) *= alpha;
|
|
else
|
|
make_vector(x, *n, std::abs(*incx)) *= alpha;
|
|
}
|