mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-12 19:20:36 +08:00
132 lines
5.4 KiB
C++
132 lines
5.4 KiB
C++
|
|
#include <iostream>
|
|
#include <Eigen/Core>
|
|
#include <bench/BenchTimer.h>
|
|
using namespace Eigen;
|
|
|
|
#ifndef SIZE
|
|
#define SIZE 50
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 10000
|
|
#endif
|
|
|
|
typedef float Scalar;
|
|
|
|
__attribute__((noinline)) void benchVec(Scalar* a, Scalar* b, Scalar* c, int size);
|
|
__attribute__((noinline)) void benchVec(MatrixXf& a, MatrixXf& b, MatrixXf& c);
|
|
__attribute__((noinline)) void benchVec(VectorXf& a, VectorXf& b, VectorXf& c);
|
|
|
|
int main(int argc, char* argv[]) {
|
|
int size = SIZE * 8;
|
|
int size2 = size * size;
|
|
Scalar* a = internal::aligned_new<Scalar>(size2);
|
|
Scalar* b = internal::aligned_new<Scalar>(size2 + 4) + 1;
|
|
Scalar* c = internal::aligned_new<Scalar>(size2);
|
|
|
|
for (int i = 0; i < size; ++i) {
|
|
a[i] = b[i] = c[i] = 0;
|
|
}
|
|
|
|
BenchTimer timer;
|
|
|
|
timer.reset();
|
|
for (int k = 0; k < 10; ++k) {
|
|
timer.start();
|
|
benchVec(a, b, c, size2);
|
|
timer.stop();
|
|
}
|
|
std::cout << timer.value() << "s " << (double(size2 * REPEAT) / timer.value()) / (1024. * 1024. * 1024.)
|
|
<< " GFlops\n";
|
|
return 0;
|
|
for (int innersize = size; innersize > 2; --innersize) {
|
|
if (size2 % innersize == 0) {
|
|
int outersize = size2 / innersize;
|
|
MatrixXf ma = Map<MatrixXf>(a, innersize, outersize);
|
|
MatrixXf mb = Map<MatrixXf>(b, innersize, outersize);
|
|
MatrixXf mc = Map<MatrixXf>(c, innersize, outersize);
|
|
timer.reset();
|
|
for (int k = 0; k < 3; ++k) {
|
|
timer.start();
|
|
benchVec(ma, mb, mc);
|
|
timer.stop();
|
|
}
|
|
std::cout << innersize << " x " << outersize << " " << timer.value() << "s "
|
|
<< (double(size2 * REPEAT) / timer.value()) / (1024. * 1024. * 1024.) << " GFlops\n";
|
|
}
|
|
}
|
|
|
|
VectorXf va = Map<VectorXf>(a, size2);
|
|
VectorXf vb = Map<VectorXf>(b, size2);
|
|
VectorXf vc = Map<VectorXf>(c, size2);
|
|
timer.reset();
|
|
for (int k = 0; k < 3; ++k) {
|
|
timer.start();
|
|
benchVec(va, vb, vc);
|
|
timer.stop();
|
|
}
|
|
std::cout << timer.value() << "s " << (double(size2 * REPEAT) / timer.value()) / (1024. * 1024. * 1024.)
|
|
<< " GFlops\n";
|
|
|
|
return 0;
|
|
}
|
|
|
|
void benchVec(MatrixXf& a, MatrixXf& b, MatrixXf& c) {
|
|
for (int k = 0; k < REPEAT; ++k) a = a + b;
|
|
}
|
|
|
|
void benchVec(VectorXf& a, VectorXf& b, VectorXf& c) {
|
|
for (int k = 0; k < REPEAT; ++k) a = a + b;
|
|
}
|
|
|
|
void benchVec(Scalar* a, Scalar* b, Scalar* c, int size) {
|
|
typedef internal::packet_traits<Scalar>::type PacketScalar;
|
|
const int PacketSize = internal::packet_traits<Scalar>::size;
|
|
PacketScalar a0, a1, a2, a3, b0, b1, b2, b3;
|
|
for (int k = 0; k < REPEAT; ++k)
|
|
for (int i = 0; i < size; i += PacketSize * 8) {
|
|
// a0 = internal::pload(&a[i]);
|
|
// b0 = internal::pload(&b[i]);
|
|
// a1 = internal::pload(&a[i+1*PacketSize]);
|
|
// b1 = internal::pload(&b[i+1*PacketSize]);
|
|
// a2 = internal::pload(&a[i+2*PacketSize]);
|
|
// b2 = internal::pload(&b[i+2*PacketSize]);
|
|
// a3 = internal::pload(&a[i+3*PacketSize]);
|
|
// b3 = internal::pload(&b[i+3*PacketSize]);
|
|
// internal::pstore(&a[i], internal::padd(a0, b0));
|
|
// a0 = internal::pload(&a[i+4*PacketSize]);
|
|
// b0 = internal::pload(&b[i+4*PacketSize]);
|
|
//
|
|
// internal::pstore(&a[i+1*PacketSize], internal::padd(a1, b1));
|
|
// a1 = internal::pload(&a[i+5*PacketSize]);
|
|
// b1 = internal::pload(&b[i+5*PacketSize]);
|
|
//
|
|
// internal::pstore(&a[i+2*PacketSize], internal::padd(a2, b2));
|
|
// a2 = internal::pload(&a[i+6*PacketSize]);
|
|
// b2 = internal::pload(&b[i+6*PacketSize]);
|
|
//
|
|
// internal::pstore(&a[i+3*PacketSize], internal::padd(a3, b3));
|
|
// a3 = internal::pload(&a[i+7*PacketSize]);
|
|
// b3 = internal::pload(&b[i+7*PacketSize]);
|
|
//
|
|
// internal::pstore(&a[i+4*PacketSize], internal::padd(a0, b0));
|
|
// internal::pstore(&a[i+5*PacketSize], internal::padd(a1, b1));
|
|
// internal::pstore(&a[i+6*PacketSize], internal::padd(a2, b2));
|
|
// internal::pstore(&a[i+7*PacketSize], internal::padd(a3, b3));
|
|
|
|
internal::pstore(&a[i + 2 * PacketSize], internal::padd(internal::ploadu(&a[i + 2 * PacketSize]),
|
|
internal::ploadu(&b[i + 2 * PacketSize])));
|
|
internal::pstore(&a[i + 3 * PacketSize], internal::padd(internal::ploadu(&a[i + 3 * PacketSize]),
|
|
internal::ploadu(&b[i + 3 * PacketSize])));
|
|
internal::pstore(&a[i + 4 * PacketSize], internal::padd(internal::ploadu(&a[i + 4 * PacketSize]),
|
|
internal::ploadu(&b[i + 4 * PacketSize])));
|
|
internal::pstore(&a[i + 5 * PacketSize], internal::padd(internal::ploadu(&a[i + 5 * PacketSize]),
|
|
internal::ploadu(&b[i + 5 * PacketSize])));
|
|
internal::pstore(&a[i + 6 * PacketSize], internal::padd(internal::ploadu(&a[i + 6 * PacketSize]),
|
|
internal::ploadu(&b[i + 6 * PacketSize])));
|
|
internal::pstore(&a[i + 7 * PacketSize], internal::padd(internal::ploadu(&a[i + 7 * PacketSize]),
|
|
internal::ploadu(&b[i + 7 * PacketSize])));
|
|
}
|
|
}
|