// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #if EIGEN_ARCH_WANTS_ALIGNMENT #define ALIGNMENT 16 #else #define ALIGNMENT 1 #endif void check_handmade_aligned_malloc() { for(int i = 1; i < 1000; i++) { char *p = (char*)ei_handmade_aligned_malloc(i); VERIFY(std::size_t(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; ei_handmade_aligned_free(p); } } void check_aligned_malloc() { for(int i = 1; i < 1000; i++) { char *p = (char*)ei_aligned_malloc(i); VERIFY(std::size_t(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; ei_aligned_free(p); } } void check_aligned_new() { for(int i = 1; i < 1000; i++) { float *p = ei_aligned_new(i); VERIFY(std::size_t(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; ei_aligned_delete(p,i); } } void check_aligned_stack_alloc() { for(int i = 1; i < 1000; i++) { ei_declare_aligned_stack_constructed_variable(float, p, i, 0); VERIFY(std::size_t(p)%ALIGNMENT==0); // if the buffer is wrongly allocated this will give a bad write --> check with valgrind for(int j = 0; j < i; j++) p[j]=0; } } // test compilation with both a struct and a class... struct MyStruct { EIGEN_MAKE_ALIGNED_OPERATOR_NEW char dummychar; Vector4f avec; }; class MyClassA { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW char dummychar; Vector4f avec; }; template void check_dynaligned() { T* obj = new T; VERIFY(std::size_t(obj)%ALIGNMENT==0); delete obj; } void test_eigen2_dynalloc() { // low level dynamic memory allocation CALL_SUBTEST(check_handmade_aligned_malloc()); CALL_SUBTEST(check_aligned_malloc()); CALL_SUBTEST(check_aligned_new()); CALL_SUBTEST(check_aligned_stack_alloc()); for (int i=0; i() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); CALL_SUBTEST( check_dynaligned() ); } // check static allocation, who knows ? { MyStruct foo0; VERIFY(std::size_t(foo0.avec.data())%ALIGNMENT==0); MyClassA fooA; VERIFY(std::size_t(fooA.avec.data())%ALIGNMENT==0); } // dynamic allocation, single object for (int i=0; iavec.data())%ALIGNMENT==0); MyClassA *fooA = new MyClassA(); VERIFY(std::size_t(fooA->avec.data())%ALIGNMENT==0); delete foo0; delete fooA; } // dynamic allocation, array const int N = 10; for (int i=0; iavec.data())%ALIGNMENT==0); MyClassA *fooA = new MyClassA[N]; VERIFY(std::size_t(fooA->avec.data())%ALIGNMENT==0); delete[] foo0; delete[] fooA; } }