// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/Core> #include "AnnoyingScalar.h" using namespace Eigen; template <typename Scalar, int Storage> void run_matrix_tests() { typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Storage> MatrixType; MatrixType m, n; // boundary cases ... m = n = MatrixType::Random(50,50); m.conservativeResize(1,50); VERIFY_IS_APPROX(m, n.block(0,0,1,50)); m = n = MatrixType::Random(50,50); m.conservativeResize(50,1); VERIFY_IS_APPROX(m, n.block(0,0,50,1)); m = n = MatrixType::Random(50,50); m.conservativeResize(50,50); VERIFY_IS_APPROX(m, n.block(0,0,50,50)); // random shrinking ... for (int i=0; i<25; ++i) { const Index rows = internal::random<Index>(1,50); const Index cols = internal::random<Index>(1,50); m = n = MatrixType::Random(50,50); m.conservativeResize(rows,cols); VERIFY_IS_APPROX(m, n.block(0,0,rows,cols)); } // random growing with zeroing ... for (int i=0; i<25; ++i) { const Index rows = internal::random<Index>(50,75); const Index cols = internal::random<Index>(50,75); m = n = MatrixType::Random(50,50); m.conservativeResizeLike(MatrixType::Zero(rows,cols)); VERIFY_IS_APPROX(m.block(0,0,n.rows(),n.cols()), n); VERIFY( rows<=50 || m.block(50,0,rows-50,cols).sum() == Scalar(0) ); VERIFY( cols<=50 || m.block(0,50,rows,cols-50).sum() == Scalar(0) ); } } template <typename Scalar> void run_vector_tests() { typedef Matrix<Scalar, 1, Eigen::Dynamic> VectorType; VectorType m, n; // boundary cases ... m = n = VectorType::Random(50); m.conservativeResize(1); VERIFY_IS_APPROX(m, n.segment(0,1)); m = n = VectorType::Random(50); m.conservativeResize(50); VERIFY_IS_APPROX(m, n.segment(0,50)); m = n = VectorType::Random(50); m.conservativeResize(m.rows(),1); VERIFY_IS_APPROX(m, n.segment(0,1)); m = n = VectorType::Random(50); m.conservativeResize(m.rows(),50); VERIFY_IS_APPROX(m, n.segment(0,50)); // random shrinking ... for (int i=0; i<50; ++i) { const int size = internal::random<int>(1,50); m = n = VectorType::Random(50); m.conservativeResize(size); VERIFY_IS_APPROX(m, n.segment(0,size)); m = n = VectorType::Random(50); m.conservativeResize(m.rows(), size); VERIFY_IS_APPROX(m, n.segment(0,size)); } // random growing with zeroing ... for (int i=0; i<50; ++i) { const int size = internal::random<int>(50,100); m = n = VectorType::Random(50); m.conservativeResizeLike(VectorType::Zero(size)); VERIFY_IS_APPROX(m.segment(0,50), n); VERIFY( size<=50 || m.segment(50,size-50).sum() == Scalar(0) ); m = n = VectorType::Random(50); m.conservativeResizeLike(Matrix<Scalar,Dynamic,Dynamic>::Zero(1,size)); VERIFY_IS_APPROX(m.segment(0,50), n); VERIFY( size<=50 || m.segment(50,size-50).sum() == Scalar(0) ); } } // Basic memory leak check with a non-copyable scalar type template<int> void noncopyable() { typedef Eigen::Matrix<AnnoyingScalar,Dynamic,1> VectorType; typedef Eigen::Matrix<AnnoyingScalar,Dynamic,Dynamic> MatrixType; { #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW AnnoyingScalar::dont_throw = true; #endif int n = 50; VectorType v0(n), v1(n); MatrixType m0(n,n), m1(n,n), m2(n,n); v0.setOnes(); v1.setOnes(); m0.setOnes(); m1.setOnes(); m2.setOnes(); VERIFY(m0==m1); m0.conservativeResize(2*n,2*n); VERIFY(m0.topLeftCorner(n,n) == m1); VERIFY(v0.head(n) == v1); v0.conservativeResize(2*n); VERIFY(v0.head(n) == v1); } VERIFY(AnnoyingScalar::instances==0 && "global memory leak detected in noncopyable"); } EIGEN_DECLARE_TEST(conservative_resize) { for(int i=0; i<g_repeat; ++i) { CALL_SUBTEST_1((run_matrix_tests<int, Eigen::RowMajor>())); CALL_SUBTEST_1((run_matrix_tests<int, Eigen::ColMajor>())); CALL_SUBTEST_2((run_matrix_tests<float, Eigen::RowMajor>())); CALL_SUBTEST_2((run_matrix_tests<float, Eigen::ColMajor>())); CALL_SUBTEST_3((run_matrix_tests<double, Eigen::RowMajor>())); CALL_SUBTEST_3((run_matrix_tests<double, Eigen::ColMajor>())); CALL_SUBTEST_4((run_matrix_tests<std::complex<float>, Eigen::RowMajor>())); CALL_SUBTEST_4((run_matrix_tests<std::complex<float>, Eigen::ColMajor>())); CALL_SUBTEST_5((run_matrix_tests<std::complex<double>, Eigen::RowMajor>())); CALL_SUBTEST_5((run_matrix_tests<std::complex<double>, Eigen::ColMajor>())); CALL_SUBTEST_1((run_matrix_tests<int, Eigen::RowMajor | Eigen::DontAlign>())); CALL_SUBTEST_1((run_vector_tests<int>())); CALL_SUBTEST_2((run_vector_tests<float>())); CALL_SUBTEST_3((run_vector_tests<double>())); CALL_SUBTEST_4((run_vector_tests<std::complex<float> >())); CALL_SUBTEST_5((run_vector_tests<std::complex<double> >())); #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW AnnoyingScalar::dont_throw = true; #endif CALL_SUBTEST_6(( run_vector_tests<AnnoyingScalar>() )); CALL_SUBTEST_6(( noncopyable<0>() )); } }