// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void matrixSum(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols); VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(rows*cols)); Scalar x = Scalar(0); for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j); VERIFY_IS_APPROX(m1.sum(), x); } template void vectorSum(const VectorType& w) { typedef typename VectorType::Scalar Scalar; int size = w.size(); VectorType v = VectorType::Random(size); for(int i = 1; i < size; i++) { Scalar s = Scalar(0); for(int j = 0; j < i; j++) s += v[j]; VERIFY_IS_APPROX(s, v.start(i).sum()); } for(int i = 0; i < size-1; i++) { Scalar s = Scalar(0); for(int j = i; j < size; j++) s += v[j]; VERIFY_IS_APPROX(s, v.end(size-i).sum()); } for(int i = 0; i < size/2; i++) { Scalar s = Scalar(0); for(int j = i; j < size-i; j++) s += v[j]; VERIFY_IS_APPROX(s, v.block(i, size-2*i).sum()); } } void test_sum() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( matrixSum(Matrix()) ); CALL_SUBTEST( matrixSum(Matrix2f()) ); CALL_SUBTEST( matrixSum(Matrix4d()) ); CALL_SUBTEST( matrixSum(MatrixXcf(3, 3)) ); CALL_SUBTEST( matrixSum(MatrixXf(8, 12)) ); CALL_SUBTEST( matrixSum(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( vectorSum(VectorXf(5)) ); CALL_SUBTEST( vectorSum(VectorXd(10)) ); CALL_SUBTEST( vectorSum(VectorXf(100)) ); } }