// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void array(const MatrixType& m) { /* this test covers the following files: Array.cpp */ typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); Scalar s1 = ei_random(), s2 = ei_random(); // scalar addition VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise()); VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); m3 = m1; m3.cwise() += s2; VERIFY_IS_APPROX(m3, m1.cwise() + s2); m3 = m1; m3.cwise() -= s1; VERIFY_IS_APPROX(m3, m1.cwise() - s1); // reductions VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum()); VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum()); if (!ei_isApprox(m1.sum(), (m1+m2).sum())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(ei_scalar_sum_op())); } template void comparisons(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all()); VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1.cwise() < m3).all() ); VERIFY(! (m1.cwise() > m3).all() ); } // comparisons to scalar VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() ); VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() ); VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() ); VERIFY( (m1.cwise() == m1(r,c) ).any() ); // test Select VERIFY_IS_APPROX( (m1.cwise()m2).select(m1,m2), m1.cwise().max(m2) ); Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2); for (int j=0; j=MatrixType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.cwise().abs().cwise()RealScalar(0.1)).count() == rows*cols); VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count(), RowVectorXi::Constant(cols,rows)); VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count(), VectorXi::Constant(rows, cols)); } template void lpNorm(const VectorType& v) { VectorType u = VectorType::Random(v.size()); VERIFY_IS_APPROX(u.template lpNorm(), u.cwise().abs().maxCoeff()); VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum()); VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum())); VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum()); } void test_array() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( array(Matrix()) ); CALL_SUBTEST( array(Matrix2f()) ); CALL_SUBTEST( array(Matrix4d()) ); CALL_SUBTEST( array(MatrixXcf(3, 3)) ); CALL_SUBTEST( array(MatrixXf(8, 12)) ); CALL_SUBTEST( array(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( comparisons(Matrix()) ); CALL_SUBTEST( comparisons(Matrix2f()) ); CALL_SUBTEST( comparisons(Matrix4d()) ); CALL_SUBTEST( comparisons(MatrixXf(8, 12)) ); CALL_SUBTEST( comparisons(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( lpNorm(Matrix()) ); CALL_SUBTEST( lpNorm(Vector2f()) ); CALL_SUBTEST( lpNorm(Vector3d()) ); CALL_SUBTEST( lpNorm(Vector4f()) ); CALL_SUBTEST( lpNorm(VectorXf(16)) ); CALL_SUBTEST( lpNorm(VectorXcd(10)) ); } }