// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli //#include #include "main.h" #include int fcn_chkder(int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for chkder example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) for (i=1; i<=15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } else { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; /* error introduced into next statement for illustration. */ /* corrected statement should read tmp3 = tmp1 . */ tmp3 = tmp2; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4; fjac[i-1+ ldfjac*(1-1)] = -1.; fjac[i-1+ ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1+ ldfjac*(3-1)] = tmp1*tmp3/tmp4; } } return 0; } void testChkder() { int i, m, n, ldfjac; double x[3], fvec[15], fjac[15*3], xp[3], fvecp[15], err[15]; m = 15; n = 3; /* the following values should be suitable for */ /* checking the jacobian matrix. */ x[1-1] = 9.2e-1; x[2-1] = 1.3e-1; x[3-1] = 5.4e-1; ldfjac = 15; chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err); fcn_chkder(m, n, x, fvec, fjac, ldfjac, 1); fcn_chkder(m, n, x, fvec, fjac, ldfjac, 2); fcn_chkder(m, n, xp, fvecp, fjac, ldfjac, 1); chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err); for (i=1; i<=m; i++) { fvecp[i-1] = fvecp[i-1] - fvec[i-1]; } double fvec_ref[] = { -1.181606, -1.429655, -1.606344, -1.745269, -1.840654, -1.921586, -1.984141, -2.022537, -2.468977, -2.827562, -3.473582, -4.437612, -6.047662, -9.267761, -18.91806 }; double fvecp_ref[] = { -7.724666e-09, -3.432406e-09, -2.034843e-10, 2.313685e-09, 4.331078e-09, 5.984096e-09, 7.363281e-09, 8.53147e-09, 1.488591e-08, 2.33585e-08, 3.522012e-08, 5.301255e-08, 8.26666e-08, 1.419747e-07, 3.19899e-07 }; double err_ref[] = { 0.1141397, 0.09943516, 0.09674474, 0.09980447, 0.1073116, 0.1220445, 0.1526814, 1, 1, 1, 1, 1, 1, 1, 1 }; for (i=1; i<=m; i++) VERIFY_IS_APPROX(fvec[i-1], fvec_ref[i-1]); for (i=1; i<=m; i++) VERIFY_IS_APPROX(fvecp[i-1], fvecp_ref[i-1]); for (i=1; i<=m; i++) VERIFY_IS_APPROX(err[i-1], err_ref[i-1]); } struct lmder1_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for lmder1 example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag != 2) { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { for ( i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjac[i-1 + ldfjac*(1-1)] = -1.; fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4; } } return 0; } }; void testLmder1() { int m=15, n=3, info; Eigen::VectorXd x(n), fvec(m); Eigen::MatrixXd fjac(m, n); VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmder1(x, fvec, ipvt); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); } struct lmder_functor { static int f(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for lmder example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) { for (i=1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { for (i=1; i<=15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjac[i-1 + ldfjac*(1-1)] = -1.; fjac[i-1 + ldfjac*(2-1)] = tmp1*tmp2/tmp4; fjac[i-1 + ldfjac*(3-1)] = tmp1*tmp3/tmp4; }; } return 0; } }; void testLmder() { const int m=15, n=3; int info, nfev, njev; double fnorm, covfac, covar_ftol; Eigen::VectorXd x(n), fvec(m), diag(n), wa1; Eigen::MatrixXd fjac(m, n); VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, 1.); // do the computation info = ei_lmder(x, fvec, nfev, njev, fjac, ipvt, wa1, diag); // check return values VERIFY( 1 == info); VERIFY(nfev==6); VERIFY(njev==5); // check norm fnorm = fvec.norm(); VERIFY_IS_APPROX(fnorm, 0.09063596); // check x VectorXd x_ref(n); x_ref << 0.08241058, 1.133037, 2.343695; VERIFY_IS_APPROX(x, x_ref); // check covariance covar_ftol = dpmpar(1); covfac = fnorm*fnorm/(m-n); covar(n, fjac.data(), m, ipvt.data(), covar_ftol, wa1.data()); Eigen::MatrixXd cov_ref(n,n); cov_ref << 0.0001531202, 0.002869941, -0.002656662, 0.002869941, 0.09480935, -0.09098995, -0.002656662, -0.09098995, 0.08778727; // std::cout << fjac*covfac << std::endl; Eigen::MatrixXd cov; cov = covfac*fjac.corner(TopLeft); VERIFY_IS_APPROX( cov, cov_ref); // TODO: why isn't this allowed ? : // VERIFY_IS_APPROX( covfac*fjac.corner(TopLeft) , cov_ref); } int fcn_hybrj1(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for hybrj1 example. */ int j, k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4; if (iflag != 2) { for (k = 1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } } else { for (k = 1; k <= n; k++) { for (j = 1; j <= n; j++) { fjac[k-1 + ldfjac*(j-1)] = zero; } fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1]; if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one; if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two; } } return 0; } void testHybrj1() { int j, n, ldfjac, info, lwa; double tol, fnorm; double x[9], fvec[9], fjac[9*9], wa[99]; n = 9; /* the following starting values provide a rough solution. */ for (j=1; j<=9; j++) { x[j-1] = -1.; } ldfjac = 9; lwa = 99; /* set tol to the square root of the machine precision. */ /* unless high solutions are required, */ /* this is the recommended setting. */ tol = sqrt(dpmpar(1)); info = hybrj1(fcn_hybrj1, 0, n, x, fvec, fjac, ldfjac, tol, wa, lwa); fnorm = enorm(n, fvec); VERIFY_IS_APPROX(fnorm, 1.192636e-08); VERIFY(info==1); double x_ref[] = { -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121 }; for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]); } int fcn_hybrj(void * /*p*/, int n, const double *x, double *fvec, double *fjac, int ldfjac, int iflag) { /* subroutine fcn for hybrj example. */ int j, k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0, four=4; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag != 2) { for (k=1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } } else { for (k = 1; k <= n; k++) { for (j=1; j <= n; j++) { fjac[k-1 + ldfjac*(j-1)] = zero; } fjac[k-1 + ldfjac*(k-1)] = three - four*x[k-1]; if (k != 1) fjac[k-1 + ldfjac*(k-1-1)] = -one; if (k != n) fjac[k-1 + ldfjac*(k+1-1)] = -two; } } return 0; } void testHybrj() { int j, n, ldfjac, maxfev, mode, nprint, info, nfev, njev, lr; double xtol, factor, fnorm; double x[9], fvec[9], fjac[9*9], diag[9], r[45], qtf[9], wa1[9], wa2[9], wa3[9], wa4[9]; n = 9; /* the following starting values provide a rough solution. */ for (j=1; j<=9; j++) { x[j-1] = -1.; } ldfjac = 9; lr = 45; /* set xtol to the square root of the machine precision. */ /* unless high solutions are required, */ /* this is the recommended setting. */ xtol = sqrt(dpmpar(1)); maxfev = 1000; mode = 2; for (j=1; j<=9; j++) { diag[j-1] = 1.; } factor = 1.e2; nprint = 0; info = hybrj(fcn_hybrj, 0, n, x, fvec, fjac, ldfjac, xtol, maxfev, diag, mode, factor, nprint, &nfev, &njev, r, lr, qtf, wa1, wa2, wa3, wa4); fnorm = enorm(n, fvec); VERIFY_IS_APPROX(fnorm, 1.192636e-08); VERIFY(nfev==11); VERIFY(njev==1); VERIFY(info==1); double x_ref[] = { -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121 }; for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]); } struct hybrd1_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, int /*iflag*/) { /* subroutine fcn for hybrd1 example. */ int k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0; for (k=1; k <= n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } return 0; } }; void testHybrd1() { int n=9, info; Eigen::VectorXd x(n), fvec(n); /* the following starting values provide a rough solution. */ x.setConstant(n, -1.); // do the computation info = ei_hybrd1(x, fvec); // check return value VERIFY( 1 == info); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } struct hybrd_functor { static int f(void * /*p*/, int n, const double *x, double *fvec, int iflag) { /* subroutine fcn for hybrd example. */ int k; double one=1, temp, temp1, temp2, three=3, two=2, zero=0; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } for (k=1; k<=n; k++) { temp = (three - two*x[k-1])*x[k-1]; temp1 = zero; if (k != 1) temp1 = x[k-1-1]; temp2 = zero; if (k != n) temp2 = x[k+1-1]; fvec[k-1] = temp - temp1 - two*temp2 + one; } return 0; } }; void testHybrd() { const int n=9; int info, nfev, ml, mu, mode; Eigen::VectorXd x(n), fvec, diag(n), R, qtf; Eigen::MatrixXd fjac; VectorXi ipvt; /* the following starting values provide a rough fit. */ x.setConstant(n, -1.); ml = 1; mu = 1; mode = 2; diag.setConstant(n, 1.); // do the computation info = ei_hybrd(x,fvec, nfev, fjac, R, qtf, diag, mode, ml, mu); // check return value VERIFY( 1 == info); VERIFY(nfev==14); // check norm VERIFY_IS_APPROX(fvec.norm(), 1.192636e-08); // check x VectorXd x_ref(n); x_ref << -0.5706545, -0.6816283, -0.7017325, -0.7042129, -0.701369, -0.6918656, -0.665792, -0.5960342, -0.4164121; VERIFY_IS_APPROX(x, x_ref); } int fcn_lmstr1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag) { /* subroutine fcn for lmstr1 example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag < 2) { for (i=1; i<=15; i++) { tmp1=i; tmp2 = 16-i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { i = iflag - 1; tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4=tmp4*tmp4; fjrow[1-1] = -1; fjrow[2-1] = tmp1*tmp2/tmp4; fjrow[3-1] = tmp1*tmp3/tmp4; } return 0; } void testLmstr1() { int m, n, ldfjac, info, lwa, ipvt[3]; double tol, fnorm; double x[30], fvec[15], fjac[9], wa[30]; m = 15; n = 3; /* the following starting values provide a rough fit. */ x[0] = 1.; x[1] = 1.; x[2] = 1.; ldfjac = 3; lwa = 30; /* set tol to the square root of the machine precision. unless high precision solutions are required, this is the recommended setting. */ tol = sqrt(dpmpar(1)); info = lmstr1(fcn_lmstr1, 0, m, n, x, fvec, fjac, ldfjac, tol, ipvt, wa, lwa); fnorm = enorm(m, fvec); VERIFY_IS_APPROX(fnorm, 0.09063596); VERIFY(info==1); double x_ref[] = {0.08241058, 1.133037, 2.343695 }; for (m=1; m<=3; m++) VERIFY_IS_APPROX(x[m-1], x_ref[m-1]); } int fcn_lmstr(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, double *fjrow, int iflag) { /* subroutine fcn for lmstr example. */ int i; double tmp1, tmp2, tmp3, tmp4; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } if (iflag < 2) { for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } } else { i = iflag - 1; tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; tmp4 = (x[2-1]*tmp2 + x[3-1]*tmp3); tmp4 = tmp4*tmp4; fjrow[1-1] = -1.; fjrow[2-1] = tmp1*tmp2/tmp4; fjrow[3-1] = tmp1*tmp3/tmp4; } return 0; } void testLmstr() { int j, m, n, ldfjac, maxfev, mode, nprint, info, nfev, njev; int ipvt[3]; double ftol, xtol, gtol, factor, fnorm; double x[3], fvec[15], fjac[3*3], diag[3], qtf[3], wa1[3], wa2[3], wa3[3], wa4[15]; m = 15; n = 3; /* the following starting values provide a rough fit. */ x[1-1] = 1.; x[2-1] = 1.; x[3-1] = 1.; ldfjac = 3; /* set ftol and xtol to the square root of the machine */ /* and gtol to zero. unless high solutions are */ /* required, these are the recommended settings. */ ftol = sqrt(dpmpar(1)); xtol = sqrt(dpmpar(1)); gtol = 0.; maxfev = 400; mode = 1; factor = 1.e2; nprint = 0; info = lmstr(fcn_lmstr, 0, m, n, x, fvec, fjac, ldfjac, ftol, xtol, gtol, maxfev, diag, mode, factor, nprint, &nfev, &njev, ipvt, qtf, wa1, wa2, wa3, wa4); fnorm = enorm(m, fvec); VERIFY_IS_APPROX(fnorm, 0.09063596); VERIFY(nfev==6); VERIFY(njev==5); VERIFY(info==1); double x_ref[] = {0.08241058, 1.133037, 2.343695 }; for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]); } int fcn_lmdif1(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int /*iflag*/) { /* function fcn for lmdif1 example */ int i; double tmp1,tmp2,tmp3; double y[15]={1.4e-1,1.8e-1,2.2e-1,2.5e-1,2.9e-1,3.2e-1,3.5e-1,3.9e-1, 3.7e-1,5.8e-1,7.3e-1,9.6e-1,1.34e0,2.1e0,4.39e0}; for (i=0; i<15; i++) { tmp1 = i+1; tmp2 = 15 - i; tmp3 = tmp1; if (i >= 8) tmp3 = tmp2; fvec[i] = y[i] - (x[0] + tmp1/(x[1]*tmp2 + x[2]*tmp3)); } return 0; } void testLmdif1() { int m, n, info, lwa, iwa[3]; double tol, fnorm, x[3], fvec[15], wa[75]; m = 15; n = 3; /* the following starting values provide a rough fit. */ x[0] = 1.e0; x[1] = 1.e0; x[2] = 1.e0; lwa = 75; /* set tol to the square root of the machine precision. unless high precision solutions are required, this is the recommended setting. */ tol = sqrt(dpmpar(1)); info = lmdif1(fcn_lmdif1, 0, m, n, x, fvec, tol, iwa, wa, lwa); fnorm = enorm(m, fvec); VERIFY_IS_APPROX(fnorm, 0.09063596); VERIFY(info==1); double x_ref[] = {0.0824106, 1.1330366, 2.3436947 }; int j; for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]); } int fcn_lmdif(void * /*p*/, int /*m*/, int /*n*/, const double *x, double *fvec, int iflag) { /* subroutine fcn for lmdif example. */ int i; double tmp1, tmp2, tmp3; double y[15]={1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34, 2.1, 4.39}; if (iflag == 0) { /* insert print statements here when nprint is positive. */ return 0; } for (i = 1; i <= 15; i++) { tmp1 = i; tmp2 = 16 - i; tmp3 = tmp1; if (i > 8) tmp3 = tmp2; fvec[i-1] = y[i-1] - (x[1-1] + tmp1/(x[2-1]*tmp2 + x[3-1]*tmp3)); } return 0; } void testLmdif() { int i, j, m, n, maxfev, mode, nprint, info, nfev, ldfjac; int ipvt[3]; double ftol, xtol, gtol, epsfcn, factor, fnorm; double x[3], fvec[15], diag[3], fjac[15*3], qtf[3], wa1[3], wa2[3], wa3[3], wa4[15]; double covfac; m = 15; n = 3; /* the following starting values provide a rough fit. */ x[1-1] = 1.; x[2-1] = 1.; x[3-1] = 1.; ldfjac = 15; /* set ftol and xtol to the square root of the machine */ /* and gtol to zero. unless high solutions are */ /* required, these are the recommended settings. */ ftol = sqrt(dpmpar(1)); xtol = sqrt(dpmpar(1)); gtol = 0.; maxfev = 800; epsfcn = 0.; mode = 1; factor = 1.e2; nprint = 0; info = lmdif(fcn_lmdif, 0, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, diag, mode, factor, nprint, &nfev, fjac, ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4); fnorm = enorm(m, fvec); VERIFY_IS_APPROX(fnorm, 0.09063596); VERIFY(nfev==21); VERIFY(info==1); double x_ref[] = {0.08241058, 1.133037, 2.343695 }; for (j=1; j<=n; j++) VERIFY_IS_APPROX(x[j-1], x_ref[j-1]); ftol = dpmpar(1); covfac = fnorm*fnorm/(m-n); covar(n, fjac, ldfjac, ipvt, ftol, wa1); double cov_ref[] = { 0.0001531202, 0.002869942, -0.002656662, 0.002869942, 0.09480937, -0.09098997, -0.002656662, -0.09098997, 0.08778729 }; for (i=1; i<=n; i++) for (j=1; j<=n; j++) VERIFY_IS_APPROX(fjac[(i-1)*ldfjac+j-1]*covfac, cov_ref[(i-1)*3+(j-1)]); } void test_NonLinear() { CALL_SUBTEST(testChkder()); CALL_SUBTEST(testLmder1()); CALL_SUBTEST(testLmder()); CALL_SUBTEST(testHybrj1()); CALL_SUBTEST(testHybrj()); CALL_SUBTEST(testHybrd1()); CALL_SUBTEST(testHybrd()); CALL_SUBTEST(testLmstr1()); CALL_SUBTEST(testLmstr()); CALL_SUBTEST(testLmdif1()); CALL_SUBTEST(testLmdif()); }