// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void inverse(const MatrixType& m) { /* this test covers the following files: Inverse.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows); if (ei_is_same_type::ret) { // let's build a more stable to inverse matrix MatrixType a = MatrixType::Random(rows,cols); m1 += m1 * m1.adjoint() + a * a.adjoint(); } m2 = m1.inverse(); VERIFY_IS_APPROX(m1, m2.inverse() ); VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5)); VERIFY_IS_APPROX(identity, m1.inverse() * m1 ); VERIFY_IS_APPROX(identity, m1 * m1.inverse() ); VERIFY_IS_APPROX(m1, m1.inverse().inverse() ); // since for the general case we implement separately row-major and col-major, test that VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose()); #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6) //computeInverseAndDetWithCheck tests //First: an invertible matrix bool invertible; RealScalar det; m1.computeInverseAndDetWithCheck(m2, det, invertible); VERIFY(invertible); VERIFY_IS_APPROX(identity, m1*m2); VERIFY_IS_APPROX(det, m1.determinant()); //Second: a rank one matrix (not invertible, except for 1x1 matrices) VectorType v3 = VectorType::Random(rows); MatrixType m3 = v3*v3.transpose(), m4(rows,cols); m3.computeInverseAndDetWithCheck(m4, det, invertible); VERIFY( rows==1 ? invertible : !invertible ); VERIFY_IS_APPROX(det, m3.determinant()); #endif } void test_inverse() { int s; for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST1( inverse(Matrix()) ); CALL_SUBTEST2( inverse(Matrix2d()) ); CALL_SUBTEST3( inverse(Matrix3f()) ); CALL_SUBTEST4( inverse(Matrix4f()) ); s = ei_random(50,320); CALL_SUBTEST5( inverse(MatrixXf(s,s)) ); s = ei_random(25,100); CALL_SUBTEST6( inverse(MatrixXcd(s,s)) ); } #ifdef EIGEN_TEST_PART_4 // test some tricky cases for 4x4 matrices VERIFY_IS_APPROX((Matrix4f() << 0,0,1,0, 1,0,0,0, 0,1,0,0, 0,0,0,1).finished().inverse(), (Matrix4f() << 0,1,0,0, 0,0,1,0, 1,0,0,0, 0,0,0,1).finished()); VERIFY_IS_APPROX((Matrix4f() << 1,0,0,0, 0,0,1,0, 0,0,0,1, 0,1,0,0).finished().inverse(), (Matrix4f() << 1,0,0,0, 0,0,0,1, 0,1,0,0, 0,0,1,0).finished()); #endif }