// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "matrix_functions.h" template void test2dRotation(double tol) { Matrix A, B, C; T angle, c, s; A << 0, 1, -1, 0; MatrixPower > Apow(A); for (int i=0; i<=20; ++i) { angle = pow(10, (i-10) / 5.); c = std::cos(angle); s = std::sin(angle); B << c, s, -s, c; C = Apow(std::ldexp(angle,1) / M_PI); std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, static_cast(tol))); } } template void test2dHyperbolicRotation(double tol) { Matrix,2,2> A, B, C; T angle, ch = std::cosh((T)1); std::complex ish(0, std::sinh((T)1)); A << ch, ish, -ish, ch; MatrixPower,2,2> > Apow(A); for (int i=0; i<=20; ++i) { angle = std::ldexp(static_cast(i-10), -1); ch = std::cosh(angle); ish = std::complex(0, std::sinh(angle)); B << ch, ish, -ish, ch; C = Apow(angle); std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n'; VERIFY(C.isApprox(B, static_cast(tol))); } } template void testExponentLaws(const MatrixType& m, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1, m2, m3, m4, m5; RealScalar x, y; for (int i=0; i::run(m1, m.rows()); MatrixPower mpow(m1); x = internal::random(); y = internal::random(); m2 = mpow(x); m3 = mpow(y); m4 = mpow(x+y); m5.noalias() = m2 * m3; VERIFY(m4.isApprox(m5, static_cast(tol))); m4 = mpow(x*y); m5 = m2.pow(y); VERIFY(m4.isApprox(m5, static_cast(tol))); m4 = (std::abs(x) * m1).pow(y); m5 = std::pow(std::abs(x), y) * m3; VERIFY(m4.isApprox(m5, static_cast(tol))); } } template void testProduct(const MatrixType& m, const VectorType& v, double tol) { typedef typename MatrixType::RealScalar RealScalar; MatrixType m1; VectorType v1, v2, v3; RealScalar p; for (int i=0; i::run(m1, m.rows()); MatrixPower mpow(m1); v1 = VectorType::Random(v.rows(), v.cols()); p = internal::random(); v2.noalias() = mpow(p) * v1; v3.noalias() = mpow(p).eval() * v1; std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n'; VERIFY(v2.isApprox(v3, static_cast(tol))); } } template void testMatrixVector(const MatrixType& m, const VectorType& v, double tol) { testExponentLaws(m,tol); testProduct(m,v,tol); } void test_matrix_power() { typedef Matrix Matrix3dRowMajor; typedef Matrix MatrixXe; typedef Matrix VectorXe; CALL_SUBTEST_2(test2dRotation(1e-13)); CALL_SUBTEST_1(test2dRotation(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64 CALL_SUBTEST_9(test2dRotation(1e-13)); CALL_SUBTEST_2(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_1(test2dHyperbolicRotation(1e-5)); CALL_SUBTEST_9(test2dHyperbolicRotation(1e-14)); CALL_SUBTEST_2(testMatrixVector(Matrix2d(), Vector2d(), 1e-13)); CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13)); CALL_SUBTEST_3(testMatrixVector(Matrix4cd(), Vector4cd(), 1e-13)); CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8), VectorXd(8), 1e-13)); CALL_SUBTEST_1(testMatrixVector(Matrix2f(), Vector2f(), 1e-4)); CALL_SUBTEST_5(testMatrixVector(Matrix3cf(), Vector3cf(), 1e-4)); CALL_SUBTEST_8(testMatrixVector(Matrix4f(), Vector4f(), 1e-4)); CALL_SUBTEST_6(testMatrixVector(MatrixXf(8,8), VectorXf(8), 1e-4)); CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7), VectorXe(7), 1e-13)); }