// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #ifdef HAS_GSL #include "gsl_helper.h" #endif template void selfadjointeigensolver(const MatrixType& m) { /* this test covers the following files: EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RealVectorType; typedef typename std::complex::Real> Complex; RealScalar largerEps = 10*test_precision(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; MatrixType b = MatrixType::Random(rows,cols); MatrixType b1 = MatrixType::Random(rows,cols); MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; SelfAdjointEigenSolver eiSymm(symmA); // generalized eigen pb SelfAdjointEigenSolver eiSymmGen(symmA, symmB); #ifdef HAS_GSL if (ei_is_same_type::ret) { typedef GslTraits Gsl; typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; typename GslTraits::Vector gEval=0; RealVectorType _eval; MatrixType _evec; convert(symmA, gSymmA); convert(symmB, gSymmB); convert(symmA, gEvec); gEval = GslTraits::createVector(rows); Gsl::eigen_symm(gSymmA, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec); // test gsl itself ! VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal().eval(), largerEps)); // compare with eigen VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs()); // generalized pb Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); convert(gEval, _eval); convert(gEvec, _evec); // test GSL itself: VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal().eval()), largerEps)); // compare with eigen // std::cerr << _eval.transpose() << "\n" << eiSymmGen.eigenvalues().transpose() << "\n\n"; // std::cerr << _evec.format(6) << "\n\n" << eiSymmGen.eigenvectors().format(6) << "\n\n\n"; VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymmGen.eigenvectors().cwise().abs()); Gsl::free(gSymmA); Gsl::free(gSymmB); GslTraits::free(gEval); Gsl::free(gEvec); } #endif VERIFY((symmA * eiSymm.eigenvectors()).isApprox( eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal().eval(), largerEps)); // generalized eigen problem Ax = lBx VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal().eval()), largerEps)); } template void eigensolver(const MatrixType& m) { /* this test covers the following files: EigenSolver.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RealVectorType; typedef typename std::complex::Real> Complex; RealScalar largerEps = 10*test_precision(); MatrixType a = MatrixType::Random(rows,cols); MatrixType a1 = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; // MatrixType b = MatrixType::Random(rows,cols); // MatrixType b1 = MatrixType::Random(rows,cols); // MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; EigenSolver ei0(symmA); VERIFY_IS_APPROX((symmA.template cast()) * (ei0.pseudoEigenvectors().template cast()), (ei0.pseudoEigenvectors().template cast()) * (ei0.eigenvalues().asDiagonal())); // a = a /*+ symmA*/; EigenSolver ei1(a); IOFormat OctaveFmt(4, AlignCols, ", ", ";\n", "", "", "[", "]"); // std::cerr << "==============\n" << a.format(OctaveFmt) << "\n\n" << ei1.eigenvalues().transpose() << "\n\n"; // std::cerr << a * ei1.pseudoEigenvectors() << "\n\n" << ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix() << "\n\n\n"; // VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); // std::cerr << a.format(OctaveFmt) << "\n\n"; // std::cerr << ei1.eigenvectors().format(OctaveFmt) << "\n\n"; // std::cerr << a.template cast() * ei1.eigenvectors() << "\n\n" << ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval() << "\n\n"; VERIFY_IS_APPROX(a.template cast() * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal().eval()); } void test_eigensolver() { for(int i = 0; i < g_repeat; i++) { // very important to test a 3x3 matrix since we provide a special path for it CALL_SUBTEST( selfadjointeigensolver(Matrix3f()) ); CALL_SUBTEST( selfadjointeigensolver(Matrix4d()) ); CALL_SUBTEST( selfadjointeigensolver(MatrixXf(7,7)) ); CALL_SUBTEST( selfadjointeigensolver(MatrixXcd(5,5)) ); CALL_SUBTEST( selfadjointeigensolver(MatrixXd(19,19)) ); CALL_SUBTEST( eigensolver(Matrix4f()) ); // FIXME the test fails for larger matrices // CALL_SUBTEST( eigensolver(MatrixXd(7,7)) ); } }