// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void triangular(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), r1(rows, cols), r2(rows, cols), mzero = MatrixType::Zero(rows, cols), mones = MatrixType::Ones(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); MatrixType m1up = m1.template part(); MatrixType m2up = m2.template part(); if (rows*cols>1) { VERIFY(m1up.isUpper()); VERIFY(m2up.transpose().isLower()); VERIFY(!m2.isLower()); } // VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2); // test overloaded operator+= r1.setZero(); r2.setZero(); r1.template part() += m1; r2 += m1up; VERIFY_IS_APPROX(r1,r2); // test overloaded operator= m1.setZero(); m1.template part() = (m2.transpose() * m2).lazy(); m3 = m2.transpose() * m2; VERIFY_IS_APPROX(m3.template part().transpose(), m1); // test overloaded operator= m1.setZero(); m1.template part() = (m2.transpose() * m2).lazy(); VERIFY_IS_APPROX(m3.template part(), m1); // test back and forward subsitution m3 = m1.template part(); VERIFY(m3.template marked().inverseProduct(m3).cwise().abs().isIdentity(test_precision())); m3 = m1.template part(); VERIFY(m3.template marked().inverseProduct(m3).cwise().abs().isIdentity(test_precision())); // FIXME these tests failed due to numerical issues // m1 = MatrixType::Random(rows, cols); // VERIFY_IS_APPROX(m1.template part().eval() * (m1.template part().inverseProduct(m2)), m2); // VERIFY_IS_APPROX(m1.template part().eval() * (m1.template part().inverseProduct(m2)), m2); VERIFY((m1.template part() * m2.template part()).isUpper()); } void test_triangular() { for(int i = 0; i < g_repeat ; i++) { // triangular(Matrix()); CALL_SUBTEST( triangular(Matrix3d()) ); CALL_SUBTEST( triangular(MatrixXcf(4, 4)) ); CALL_SUBTEST( triangular(Matrix,8, 8>()) ); CALL_SUBTEST( triangular(MatrixXf(12,12)) ); } }