// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename ArrayType::RealScalar RealScalar; typedef Array ColVectorType; typedef Array RowVectorType; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor VERIFY_IS_APPROX(m1, m4); ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols); Scalar s1 = internal::random(), s2 = internal::random(); // scalar addition VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); m3 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2); // reductions VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using std::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op())); // vector-wise ops m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); typedef Array FixedArrayType; FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100*numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); // pow VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1,2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1,3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube()); ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(Eigen::pow(2*m1,exponents), 4*m1.square()); VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); VERIFY_IS_APPROX(Eigen::pow(m1,2*exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); VERIFY_IS_APPROX(Eigen::pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0))); // Check possible conflicts with 1D ctor typedef Array OneDArrayType; OneDArrayType o1(rows); VERIFY(o1.size()==rows); OneDArrayType o4((int)rows); VERIFY(o4.size()==rows); } template void comparisons(const ArrayType& m) { using std::abs; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random(0, rows-1), c = internal::random(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4); VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1 < m3).all() ); VERIFY(! (m1 > m3).all() ); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all()); // comparisons array to scalar VERIFY( (m1 != (m1(r,c)+1) ).any() ); VERIFY( (m1 > (m1(r,c)-1) ).any() ); VERIFY( (m1 < (m1(r,c)+1) ).any() ); VERIFY( (m1 == m1(r,c) ).any() ); // comparisons scalar to array VERIFY( ( (m1(r,c)+1) != m1).any() ); VERIFY( ( (m1(r,c)-1) < m1).any() ); VERIFY( ( (m1(r,c)+1) > m1).any() ); VERIFY( ( m1(r,c) == m1).any() ); // test Select VERIFY_IS_APPROX( (m1m2).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j=ArrayType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version: VERIFY_IS_APPROX( (m1.abs()RealScalar(0.1)).count() == rows*cols); // and/or VERIFY( (m1RealScalar(0)).count() == 0); VERIFY( (m1=RealScalar(0)).count() == rows*cols); RealScalar a = m1.abs().mean(); VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count()); typedef Array ArrayOfIndices; // TODO allows colwise/rowwise for array VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); } template void array_real(const ArrayType& m) { using std::abs; using std::sqrt; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4); Scalar s1 = internal::random(); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); #if EIGEN_HAS_C99_MATH VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1)); VERIFY_IS_APPROX(m1.digamma(), digamma(m1)); VERIFY_IS_APPROX(m1.erf(), erf(m1)); VERIFY_IS_APPROX(m1.erfc(), erfc(m1)); #endif // EIGEN_HAS_C99_MATH VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); // avoid NaNs with abs() so verification doesn't fail m3 = m1.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1))); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log1p(), log1p(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3)); VERIFY((!(m1>m2) == (m1<=m2)).all()); VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast())*std::acos(-1.0)); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((Eigen::isnan)((m1*0.0)/0.0).all()); VERIFY((Eigen::isinf)(m4/0.0).all()); VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all()); VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m1))); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1); VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); if(!NumTraits::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1); // shift argument of logarithm so that it is not zero Scalar smallNumber = NumTraits::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber)); VERIFY_IS_APPROX((m3 + smallNumber + 1).log() , log1p(abs(m1) + smallNumber)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(log10(m3), log(m3)/log(10)); // scalar by array division const RealScalar tiny = sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); #if EIGEN_HAS_C99_MATH // check special functions (comparing against numpy implementation) if (!NumTraits::IsComplex) { { // Test various propreties of igamma & igammac. These are normalized // gamma integrals where // igammac(a, x) = Gamma(a, x) / Gamma(a) // igamma(a, x) = gamma(a, x) / Gamma(a) // where Gamma and gamma are considered the standard unnormalized // upper and lower incomplete gamma functions, respectively. ArrayType a = m1.abs() + 2; ArrayType x = m2.abs() + 2; ArrayType zero = ArrayType::Zero(rows, cols); ArrayType one = ArrayType::Constant(rows, cols, Scalar(1.0)); ArrayType a_m1 = a - one; ArrayType Gamma_a_x = Eigen::igammac(a, x) * a.lgamma().exp(); ArrayType Gamma_a_m1_x = Eigen::igammac(a_m1, x) * a_m1.lgamma().exp(); ArrayType gamma_a_x = Eigen::igamma(a, x) * a.lgamma().exp(); ArrayType gamma_a_m1_x = Eigen::igamma(a_m1, x) * a_m1.lgamma().exp(); // Gamma(a, 0) == Gamma(a) VERIFY_IS_APPROX(Eigen::igammac(a, zero), one); // Gamma(a, x) + gamma(a, x) == Gamma(a) VERIFY_IS_APPROX(Gamma_a_x + gamma_a_x, a.lgamma().exp()); // Gamma(a, x) == (a - 1) * Gamma(a-1, x) + x^(a-1) * exp(-x) VERIFY_IS_APPROX(Gamma_a_x, (a - 1) * Gamma_a_m1_x + x.pow(a-1) * (-x).exp()); // gamma(a, x) == (a - 1) * gamma(a-1, x) - x^(a-1) * exp(-x) VERIFY_IS_APPROX(gamma_a_x, (a - 1) * gamma_a_m1_x - x.pow(a-1) * (-x).exp()); } // Check exact values of igamma and igammac against a third party calculation. Scalar a_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; Scalar x_s[] = {Scalar(0), Scalar(1), Scalar(1.5), Scalar(4), Scalar(0.0001), Scalar(1000.5)}; // location i*6+j corresponds to a_s[i], x_s[j]. Scalar nan = std::numeric_limits::quiet_NaN(); Scalar igamma_s[][6] = {{0.0, nan, nan, nan, nan, nan}, {0.0, 0.6321205588285578, 0.7768698398515702, 0.9816843611112658, 9.999500016666262e-05, 1.0}, {0.0, 0.4275932955291202, 0.608374823728911, 0.9539882943107686, 7.522076445089201e-07, 1.0}, {0.0, 0.01898815687615381, 0.06564245437845008, 0.5665298796332909, 4.166333347221828e-18, 1.0}, {0.0, 0.9999780593618628, 0.9999899967080838, 0.9999996219837988, 0.9991370418689945, 1.0}, {0.0, 0.0, 0.0, 0.0, 0.0, 0.5042041932513908}}; Scalar igammac_s[][6] = {{nan, nan, nan, nan, nan, nan}, {1.0, 0.36787944117144233, 0.22313016014842982, 0.018315638888734182, 0.9999000049998333, 0.0}, {1.0, 0.5724067044708798, 0.3916251762710878, 0.04601170568923136, 0.9999992477923555, 0.0}, {1.0, 0.9810118431238462, 0.9343575456215499, 0.4334701203667089, 1.0, 0.0}, {1.0, 2.1940638138146658e-05, 1.0003291916285e-05, 3.7801620118431334e-07, 0.0008629581310054535, 0.0}, {1.0, 1.0, 1.0, 1.0, 1.0, 0.49579580674813944}}; for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { if ((std::isnan)(igamma_s[i][j])) { VERIFY((std::isnan)(numext::igamma(a_s[i], x_s[j]))); } else { VERIFY_IS_APPROX(numext::igamma(a_s[i], x_s[j]), igamma_s[i][j]); } if ((std::isnan)(igammac_s[i][j])) { VERIFY((std::isnan)(numext::igammac(a_s[i], x_s[j]))); } else { VERIFY_IS_APPROX(numext::igammac(a_s[i], x_s[j]), igammac_s[i][j]); } } } } #endif // EIGEN_HAS_C99_MATH // check inplace transpose m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); } template void array_complex(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag()); Array m3(rows, cols); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = sqrt(m1(i,j)); // these tests are mostly to check possible compilation issues with free-functions. VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY((m1.isNaN() == (Eigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (Eigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (Eigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1)); VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp()); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j))); VERIFY_IS_APPROX(arg(m1), m3); std::complex zero(0.0,0.0); VERIFY((Eigen::isnan)(m1*zero/zero).all()); #if EIGEN_COMP_MSVC // msvc complex division is not robust VERIFY((Eigen::isinf)(m4/RealScalar(0)).all()); #else #if EIGEN_COMP_CLANG // clang's complex division is notoriously broken too if((numext::isinf)(m4(0,0)/RealScalar(0))) { #endif VERIFY((Eigen::isinf)(m4/zero).all()); #if EIGEN_COMP_CLANG } else { VERIFY((Eigen::isinf)(m4.real()/zero.real()).all()); } #endif #endif // MSVC VERIFY(((Eigen::isfinite)(m1) && (!(Eigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all()); VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1)))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1)/log(10)); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1); // scalar by array division Scalar s1 = internal::random(); const RealScalar tiny = std::sqrt(std::numeric_limits::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); // check inplace transpose m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1); } template void min_max(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; Index rows = m.rows(); Index cols = m.cols(); ArrayType m1 = ArrayType::Random(rows, cols); // min/max with array Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff(); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1))); // min/max with scalar input VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); VERIFY_IS_APPROX(m1, (m1.min)( maxM1)); VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); VERIFY_IS_APPROX(m1, (m1.max)( minM1)); } template void verify_component_wise(const X& x, const Y& y) { for(Index i=0; i void array_special_functions() { using std::abs; using std::sqrt; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; Scalar plusinf = std::numeric_limits::infinity(); Scalar nan = std::numeric_limits::quiet_NaN(); // Check the zeta function against scipy.special.zeta { ArrayType x(7), q(7), res(7), ref(7); x << 1.5, 4, 10.5, 10000.5, 3, 1, 0.9; q << 2, 1.5, 3, 1.0001, -2.5, 1.2345, 1.2345; ref << 1.61237534869, 0.234848505667, 1.03086757337e-5, 0.367879440865, 0.054102025820864097, plusinf, nan; CALL_SUBTEST( verify_component_wise(ref, ref); ); CALL_SUBTEST( res = x.zeta(q); verify_component_wise(res, ref); ); CALL_SUBTEST( res = zeta(x,q); verify_component_wise(res, ref); ); } // digamma { ArrayType x(7), res(7), ref(7); x << 1, 1.5, 4, -10.5, 10000.5, 0, -1; ref << -0.5772156649015329, 0.03648997397857645, 1.2561176684318, 2.398239129535781, 9.210340372392849, plusinf, plusinf; CALL_SUBTEST( verify_component_wise(ref, ref); ); CALL_SUBTEST( res = x.digamma(); verify_component_wise(res, ref); ); CALL_SUBTEST( res = digamma(x); verify_component_wise(res, ref); ); } #if EIGEN_HAS_C99_MATH { ArrayType n(11), x(11), res(11), ref(11); n << 1, 1, 1, 1.5, 17, 31, 28, 8, 42, 147, 170; x << 2, 3, 25.5, 1.5, 4.7, 11.8, 17.7, 30.2, 15.8, 54.1, 64; ref << 0.644934066848, 0.394934066848, 0.0399946696496, nan, 293.334565435, 0.445487887616, -2.47810300902e-07, -8.29668781082e-09, -0.434562276666, 0.567742190178, -0.0108615497927; CALL_SUBTEST( verify_component_wise(ref, ref); ); if(sizeof(RealScalar)>=8) { // double // Reason for commented line: http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1232 // CALL_SUBTEST( res = x.polygamma(n); verify_component_wise(res, ref); ); CALL_SUBTEST( res = polygamma(n,x); verify_component_wise(res, ref); ); } else { // CALL_SUBTEST( res = x.polygamma(n); verify_component_wise(res.head(8), ref.head(8)); ); CALL_SUBTEST( res = polygamma(n,x); verify_component_wise(res.head(8), ref.head(8)); ); } } #endif #if EIGEN_HAS_C99_MATH { // Inputs and ground truth generated with scipy via: // a = np.logspace(-3, 3, 5) - 1e-3 // b = np.logspace(-3, 3, 5) - 1e-3 // x = np.linspace(-0.1, 1.1, 5) // (full_a, full_b, full_x) = np.vectorize(lambda a, b, x: (a, b, x))(*np.ix_(a, b, x)) // full_a = full_a.flatten().tolist() # same for full_b, full_x // v = scipy.special.betainc(full_a, full_b, full_x).flatten().tolist() // // Note in Eigen, we call betainc with arguments in the order (x, a, b). ArrayType a(125); ArrayType b(125); ArrayType x(125); ArrayType v(125); ArrayType res(125); a << 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999, 999.999; b << 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.03062277660168379, 0.999, 0.999, 0.999, 0.999, 0.999, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 31.62177660168379, 999.999, 999.999, 999.999, 999.999, 999.999; x << -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1, -0.1, 0.2, 0.5, 0.8, 1.1; v << nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.47972119876364683, 0.5, 0.5202788012363533, nan, nan, 0.9518683957740043, 0.9789663010413743, 0.9931729188073435, nan, nan, 0.999995949033062, 0.9999999999993698, 0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan, nan, nan, nan, nan, 0.006827081192655869, 0.0210336989586256, 0.04813160422599567, nan, nan, 0.20014344256217678, 0.5000000000000001, 0.7998565574378232, nan, nan, 0.9991401428435834, 0.999999999698403, 0.9999999999999999, nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan, nan, nan, nan, nan, 1.0646600232370887e-25, 6.301722877826246e-13, 4.050966937974938e-06, nan, nan, 7.864342668429763e-23, 3.015969667594166e-10, 0.0008598571564165444, nan, nan, 6.031987710123844e-08, 0.5000000000000007, 0.9999999396801229, nan, nan, 0.9999999999999999, 0.9999999999999999, 0.9999999999999999, nan, nan, nan, nan, nan, nan, nan, 0.0, 7.029920380986636e-306, 2.2450728208591345e-101, nan, nan, 0.0, 9.275871147869727e-302, 1.2232913026152827e-97, nan, nan, 0.0, 3.0891393081932924e-252, 2.9303043666183996e-60, nan, nan, 2.248913486879199e-196, 0.5000000000004947, 0.9999999999999999, nan; CALL_SUBTEST(res = betainc(a, b, x); verify_component_wise(res, v);); } // Test various properties of betainc { ArrayType m1 = ArrayType::Random(32); ArrayType m2 = ArrayType::Random(32); ArrayType m3 = ArrayType::Random(32); ArrayType one = ArrayType::Constant(32, Scalar(1.0)); const Scalar eps = std::numeric_limits::epsilon(); ArrayType a = (m1 * 4.0).exp(); ArrayType b = (m2 * 4.0).exp(); ArrayType x = m3.abs(); // betainc(a, 1, x) == x**a CALL_SUBTEST( ArrayType test = betainc(a, one, x); ArrayType expected = x.pow(a); verify_component_wise(test, expected);); // betainc(1, b, x) == 1 - (1 - x)**b CALL_SUBTEST( ArrayType test = betainc(one, b, x); ArrayType expected = one - (one - x).pow(b); verify_component_wise(test, expected);); // betainc(a, b, x) == 1 - betainc(b, a, 1-x) CALL_SUBTEST( ArrayType test = betainc(a, b, x) + betainc(b, a, one - x); ArrayType expected = one; verify_component_wise(test, expected);); // betainc(a+1, b, x) = betainc(a, b, x) - x**a * (1 - x)**b / (a * beta(a, b)) CALL_SUBTEST( ArrayType num = x.pow(a) * (one - x).pow(b); ArrayType denom = a * (a.lgamma() + b.lgamma() - (a + b).lgamma()).exp(); // Add eps to rhs and lhs so that component-wise test doesn't result in // nans when both outputs are zeros. ArrayType expected = betainc(a, b, x) - num / denom + eps; ArrayType test = betainc(a + one, b, x) + eps; if (sizeof(Scalar) >= 8) { // double verify_component_wise(test, expected); } else { // Reason for limited test: http://eigen.tuxfamily.org/bz/show_bug.cgi?id=1232 verify_component_wise(test.head(8), expected.head(8)); }); // betainc(a, b+1, x) = betainc(a, b, x) + x**a * (1 - x)**b / (b * beta(a, b)) CALL_SUBTEST( // Add eps to rhs and lhs so that component-wise test doesn't result in // nans when both outputs are zeros. ArrayType num = x.pow(a) * (one - x).pow(b); ArrayType denom = b * (a.lgamma() + b.lgamma() - (a + b).lgamma()).exp(); ArrayType expected = betainc(a, b, x) + num / denom + eps; ArrayType test = betainc(a, b + one, x) + eps; verify_component_wise(test, expected);); } #endif } void test_array() { #ifndef EIGEN_HAS_C99_MATH std::cerr << "WARNING: testing of special math functions disabled" << std::endl; #endif for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array(Array()) ); CALL_SUBTEST_2( array(Array22f()) ); CALL_SUBTEST_3( array(Array44d()) ); CALL_SUBTEST_4( array(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_5( array(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( array(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Array()) ); CALL_SUBTEST_2( comparisons(Array22f()) ); CALL_SUBTEST_3( comparisons(Array44d()) ); CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( min_max(Array()) ); CALL_SUBTEST_2( min_max(Array22f()) ); CALL_SUBTEST_3( min_max(Array44d()) ); CALL_SUBTEST_5( min_max(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( min_max(ArrayXXi(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_real(Array()) ); CALL_SUBTEST_2( array_real(Array22f()) ); CALL_SUBTEST_3( array_real(Array44d()) ); CALL_SUBTEST_5( array_real(ArrayXXf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random(1,EIGEN_TEST_MAX_SIZE), internal::random(1,EIGEN_TEST_MAX_SIZE))) ); } VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); typedef CwiseUnaryOp, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base::type, ArrayBase >::value)); CALL_SUBTEST_7(array_special_functions()); CALL_SUBTEST_7(array_special_functions()); }