// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include template void eigensolver(const MatrixType& m) { /* this test covers the following files: ComplexEigenSolver.h, and indirectly ComplexSchur.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RealVectorType; typedef typename std::complex::Real> Complex; MatrixType a = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a; ComplexEigenSolver ei0(symmA); VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); ComplexEigenSolver ei1(a); VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); // Regression test for issue #66 MatrixType z = MatrixType::Zero(rows,cols); ComplexEigenSolver eiz(z); VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); } void test_eigensolver_complex() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) ); } }