namespace Eigen { /** \eigenManualPage TopicSparseSystems Solving Sparse Linear Systems In Eigen, there are several methods available to solve linear systems when the coefficient matrix is sparse. Because of the special representation of this class of matrices, special care should be taken in order to get a good performance. See \ref TutorialSparse for a detailed introduction about sparse matrices in Eigen. This page lists the sparse solvers available in Eigen. The main steps that are common to all these linear solvers are introduced as well. Depending on the properties of the matrix, the desired accuracy, the end-user is able to tune those steps in order to improve the performance of its code. Note that it is not required to know deeply what's hiding behind these steps: the last section presents a benchmark routine that can be easily used to get an insight on the performance of all the available solvers. \eigenAutoToc \section TutorialSparseDirectSolvers Sparse solvers %Eigen currently provides a limited set of built-in solvers, as well as wrappers to external solver libraries. They are summarized in the following table:
Class | Module | Solver kind | Matrix kind | Features related to performance | Dependencies,License | Notes |
---|---|---|---|---|---|---|
SimplicialLLT | \link SparseCholesky_Module SparseCholesky \endlink | Direct LLt factorization | SPD | Fill-in reducing | built-in, LGPL | SimplicialLDLT is often preferable |
SimplicialLDLT | \link SparseCholesky_Module SparseCholesky \endlink | Direct LDLt factorization | SPD | Fill-in reducing | built-in, LGPL | Recommended for very sparse and not too large problems (e.g., 2D Poisson eq.) |
ConjugateGradient | \link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink | Classic iterative CG | SPD | Preconditionning | built-in, MPL2 | Recommended for large symmetric problems (e.g., 3D Poisson eq.) |
LeastSquaresConjugateGradient | \link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink | CG for rectangular least-square problem | Rectangular | Preconditionning | built-in, MPL2 | Solve for min |A'Ax-b|^2 without forming A'A |
BiCGSTAB | \link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink | Iterative stabilized bi-conjugate gradient | Square | Preconditionning | built-in, MPL2 | To speedup the convergence, try it with the \ref IncompleteLUT preconditioner. |
SparseLU | \link SparseLU_Module SparseLU \endlink | LU factorization | Square | Fill-in reducing, Leverage fast dense algebra | built-in, MPL2 | optimized for small and large problems with irregular patterns |
SparseQR | \link SparseQR_Module SparseQR \endlink | QR factorization | Any, rectangular | Fill-in reducing | built-in, MPL2 | recommended for least-square problems, has a basic rank-revealing feature |
Wrappers to external solvers | ||||||
PastixLLT \n PastixLDLT \n PastixLU | \link PaStiXSupport_Module PaStiXSupport \endlink | Direct LLt, LDLt, LU factorizations | SPD \n SPD \n Square | Fill-in reducing, Leverage fast dense algebra, Multithreading | Requires the PaStiX package, \b CeCILL-C | optimized for tough problems and symmetric patterns |
CholmodSupernodalLLT | \link CholmodSupport_Module CholmodSupport \endlink | Direct LLt factorization | SPD | Fill-in reducing, Leverage fast dense algebra | Requires the SuiteSparse package, \b GPL | |
UmfPackLU | \link UmfPackSupport_Module UmfPackSupport \endlink | Direct LU factorization | Square | Fill-in reducing, Leverage fast dense algebra | Requires the SuiteSparse package, \b GPL | |
SuperLU | \link SuperLUSupport_Module SuperLUSupport \endlink | Direct LU factorization | Square | Fill-in reducing, Leverage fast dense algebra | Requires the SuperLU library, (BSD-like) | |
SPQR | \link SPQRSupport_Module SPQRSupport \endlink | QR factorization | Any, rectangular | fill-in reducing, multithreaded, fast dense algebra | requires the SuiteSparse package, \b GPL | recommended for linear least-squares problems, has a rank-revealing feature |
Matrix | N | NNZ | UMFPACK | SUPERLU | PASTIX LU | BiCGSTAB | BiCGSTAB+ILUT | GMRES+ILUT | LDLT | CHOLMOD LDLT | PASTIX LDLT | LLT | CHOLMOD SP LLT | CHOLMOD LLT | PASTIX LLT | CG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
vector_graphics | 12855 | 72069 | Compute Time | 0.0254549 | 0.0215677 | 0.0701827 | 0.000153388 | 0.0140107 | 0.0153709 | 0.0101601 | 0.00930502 | 0.0649689 | |||||
Solve Time | 0.00337835 | 0.000951826 | 0.00484373 | 0.0374886 | 0.0046445 | 0.00847754 | 0.000541813 | 0.000293696 | 0.00485376 | ||||||||
Total Time | 0.0288333 | 0.0225195 | 0.0750265 | 0.037642 | 0.0186552 | 0.0238484 | 0.0107019 | 0.00959871 | 0.0698227 | ||||||||
Error(Iter) | 1.299e-16 | 2.04207e-16 | 4.83393e-15 | 3.94856e-11 (80) | 1.03861e-12 (3) | 5.81088e-14 (6) | 1.97578e-16 | 1.83927e-16 | 4.24115e-15 | ||||||||
poisson_SPD | 19788 | 308232 | Compute Time | 0.425026 | 1.82378 | 0.617367 | 0.000478921 | 1.34001 | 1.33471 | 0.796419 | 0.857573 | 0.473007 | 0.814826 | 0.184719 | 0.861555 | 0.470559 | 0.000458188 |
Solve Time | 0.0280053 | 0.0194402 | 0.0268747 | 0.249437 | 0.0548444 | 0.0926991 | 0.00850204 | 0.0053171 | 0.0258932 | 0.00874603 | 0.00578155 | 0.00530361 | 0.0248942 | 0.239093 | |||
Total Time | 0.453031 | 1.84322 | 0.644241 | 0.249916 | 1.39486 | 1.42741 | 0.804921 | 0.862891 | 0.4989 | 0.823572 | 0.190501 | 0.866859 | 0.495453 | 0.239551 | |||
Error(Iter) | 4.67146e-16 | 1.068e-15 | 1.3397e-15 | 6.29233e-11 (201) | 3.68527e-11 (6) | 3.3168e-15 (16) | 1.86376e-15 | 1.31518e-16 | 1.42593e-15 | 3.45361e-15 | 3.14575e-16 | 2.21723e-15 | 7.21058e-16 | 9.06435e-12 (261) | |||
sherman2 | 1080 | 23094 | Compute Time | 0.00631754 | 0.015052 | 0.0247514 | - | 0.0214425 | 0.0217988 | ||||||||
Solve Time | 0.000478424 | 0.000337998 | 0.0010291 | - | 0.00243152 | 0.00246152 | |||||||||||
Total Time | 0.00679597 | 0.01539 | 0.0257805 | - | 0.023874 | 0.0242603 | |||||||||||
Error(Iter) | 1.83099e-15 | 8.19351e-15 | 2.625e-14 | 1.3678e+69 (1080) | 4.1911e-12 (7) | 5.0299e-13 (12) | |||||||||||
bcsstk01_SPD | 48 | 400 | Compute Time | 0.000169079 | 0.00010789 | 0.000572538 | 1.425e-06 | 9.1612e-05 | 8.3985e-05 | 5.6489e-05 | 7.0913e-05 | 0.000468251 | 5.7389e-05 | 8.0212e-05 | 5.8394e-05 | 0.000463017 | 1.333e-06 |
Solve Time | 1.2288e-05 | 1.1124e-05 | 0.000286387 | 8.5896e-05 | 1.6381e-05 | 1.6984e-05 | 3.095e-06 | 4.115e-06 | 0.000325438 | 3.504e-06 | 7.369e-06 | 3.454e-06 | 0.000294095 | 6.0516e-05 | |||
Total Time | 0.000181367 | 0.000119014 | 0.000858925 | 8.7321e-05 | 0.000107993 | 0.000100969 | 5.9584e-05 | 7.5028e-05 | 0.000793689 | 6.0893e-05 | 8.7581e-05 | 6.1848e-05 | 0.000757112 | 6.1849e-05 | |||
Error(Iter) | 1.03474e-16 | 2.23046e-16 | 2.01273e-16 | 4.87455e-07 (48) | 1.03553e-16 (2) | 3.55965e-16 (2) | 2.48189e-16 | 1.88808e-16 | 1.97976e-16 | 2.37248e-16 | 1.82701e-16 | 2.71474e-16 | 2.11322e-16 | 3.547e-09 (48) | |||
sherman1 | 1000 | 3750 | Compute Time | 0.00228805 | 0.00209231 | 0.00528268 | 9.846e-06 | 0.00163522 | 0.00162155 | 0.000789259 | 0.000804495 | 0.00438269 | |||||
Solve Time | 0.000213788 | 9.7983e-05 | 0.000938831 | 0.00629835 | 0.000361764 | 0.00078794 | 4.3989e-05 | 2.5331e-05 | 0.000917166 | ||||||||
Total Time | 0.00250184 | 0.00219029 | 0.00622151 | 0.0063082 | 0.00199698 | 0.00240949 | 0.000833248 | 0.000829826 | 0.00529986 | ||||||||
Error(Iter) | 1.16839e-16 | 2.25968e-16 | 2.59116e-16 | 3.76779e-11 (248) | 4.13343e-11 (4) | 2.22347e-14 (10) | 2.05861e-16 | 1.83555e-16 | 1.02917e-15 | ||||||||
young1c | 841 | 4089 | Compute Time | 0.00235843 | 0.00217228 | 0.00568075 | 1.2735e-05 | 0.00264866 | 0.00258236 | ||||||||
Solve Time | 0.000329599 | 0.000168634 | 0.00080118 | 0.0534738 | 0.00187193 | 0.00450211 | |||||||||||
Total Time | 0.00268803 | 0.00234091 | 0.00648193 | 0.0534865 | 0.00452059 | 0.00708447 | |||||||||||
Error(Iter) | 1.27029e-16 | 2.81321e-16 | 5.0492e-15 | 8.0507e-11 (706) | 3.00447e-12 (8) | 1.46532e-12 (16) | |||||||||||
mhd1280b | 1280 | 22778 | Compute Time | 0.00234898 | 0.00207079 | 0.00570918 | 2.5976e-05 | 0.00302563 | 0.00298036 | 0.00144525 | 0.000919922 | 0.00426444 | |||||
Solve Time | 0.00103392 | 0.000211911 | 0.00105 | 0.0110432 | 0.000628287 | 0.00392089 | 0.000138303 | 6.2446e-05 | 0.00097564 | ||||||||
Total Time | 0.0033829 | 0.0022827 | 0.00675918 | 0.0110692 | 0.00365392 | 0.00690124 | 0.00158355 | 0.000982368 | 0.00524008 | ||||||||
Error(Iter) | 1.32953e-16 | 3.08646e-16 | 6.734e-16 | 8.83132e-11 (40) | 1.51153e-16 (1) | 6.08556e-16 (8) | 1.89264e-16 | 1.97477e-16 | 6.68126e-09 | ||||||||
crashbasis | 160000 | 1750416 | Compute Time | 3.2019 | 5.7892 | 15.7573 | 0.00383515 | 3.1006 | 3.09921 | ||||||||
Solve Time | 0.261915 | 0.106225 | 0.402141 | 1.49089 | 0.24888 | 0.443673 | |||||||||||
Total Time | 3.46381 | 5.89542 | 16.1594 | 1.49473 | 3.34948 | 3.54288 | |||||||||||
Error(Iter) | 1.76348e-16 | 4.58395e-16 | 1.67982e-14 | 8.64144e-11 (61) | 8.5996e-12 (2) | 6.04042e-14 (5) |