// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" template void basicStuff(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); // this test relies a lot on Random.h, and there's not much more that we can do // to test it, hence I consider that we will have tested Random.h MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows); Scalar x = ei_random(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); m1.coeffRef(r,c) = x; VERIFY_IS_APPROX(x, m1.coeff(r,c)); m1(r,c) = x; VERIFY_IS_APPROX(x, m1(r,c)); v1.coeffRef(r) = x; VERIFY_IS_APPROX(x, v1.coeff(r)); v1(r) = x; VERIFY_IS_APPROX(x, v1(r)); v1[r] = x; VERIFY_IS_APPROX(x, v1[r]); VERIFY_IS_APPROX( v1, v1); VERIFY_IS_NOT_APPROX( v1, 2*v1); VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); if(NumTraits::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX( vzero, v1-v1); VERIFY_IS_APPROX( m1, m1); VERIFY_IS_NOT_APPROX( m1, 2*m1); VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX( mzero, m1-m1); // always test operator() on each read-only expression class, // in order to check const-qualifiers. // indeed, if an expression class (here Zero) is meant to be read-only, // hence has no _write() method, the corresponding MatrixBase method (here zero()) // should return a const-qualified object so that it is the const-qualified // operator() that gets called, which in turn calls _read(). VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast(1)); // now test copying a row-vector into a (column-)vector and conversely. square.col(r) = square.row(r).eval(); Matrix rv(rows); Matrix cv(rows); rv = square.row(r); cv = square.col(r); VERIFY_IS_APPROX(rv, cv.transpose()); if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) { VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); } // test swap m3 = m1; m1.swap(m2); VERIFY_IS_APPROX(m3, m2); VERIFY_IS_NOT_APPROX(m3, m1); } void test_basicstuff() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( basicStuff(Matrix()) ); CALL_SUBTEST( basicStuff(Matrix4d()) ); CALL_SUBTEST( basicStuff(MatrixXcf(3, 3)) ); CALL_SUBTEST( basicStuff(MatrixXi(8, 12)) ); CALL_SUBTEST( basicStuff(MatrixXcd(20, 20)) ); CALL_SUBTEST( basicStuff(Matrix()) ); CALL_SUBTEST( basicStuff(Matrix(10,10)) ); } }