// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_cuda #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_GPU #include "main.h" #include using Eigen::Tensor; void test_cuda_elementwise_small() { Tensor in1(Eigen::array(2)); Tensor in2(Eigen::array(2)); Tensor out(Eigen::array(2)); in1.setRandom(); in2.setRandom(); std::size_t in1_bytes = in1.size() * sizeof(float); std::size_t in2_bytes = in2.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_in1; float* d_in2; float* d_out; cudaMalloc((void**)(&d_in1), in1_bytes); cudaMalloc((void**)(&d_in2), in2_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap, Eigen::Aligned> gpu_in1( d_in1, Eigen::array(2)); Eigen::TensorMap, Eigen::Aligned> gpu_in2( d_in2, Eigen::array(2)); Eigen::TensorMap, Eigen::Aligned> gpu_out( d_out, Eigen::array(2)); gpu_out.device(gpu_device) = gpu_in1 + gpu_in2; assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 2; ++i) { VERIFY_IS_APPROX( out(Eigen::array(i)), in1(Eigen::array(i)) + in2(Eigen::array(i))); } cudaFree(d_in1); cudaFree(d_in2); cudaFree(d_out); } void test_cuda_elementwise() { Tensor in1(Eigen::array(72,53,97)); Tensor in2(Eigen::array(72,53,97)); Tensor in3(Eigen::array(72,53,97)); Tensor out(Eigen::array(72,53,97)); in1.setRandom(); in2.setRandom(); in3.setRandom(); std::size_t in1_bytes = in1.size() * sizeof(float); std::size_t in2_bytes = in2.size() * sizeof(float); std::size_t in3_bytes = in3.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_in1; float* d_in2; float* d_in3; float* d_out; cudaMalloc((void**)(&d_in1), in1_bytes); cudaMalloc((void**)(&d_in2), in2_bytes); cudaMalloc((void**)(&d_in3), in3_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_in3, in3.data(), in3_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_in1(d_in1, Eigen::array(72,53,97)); Eigen::TensorMap > gpu_in2(d_in2, Eigen::array(72,53,97)); Eigen::TensorMap > gpu_in3(d_in3, Eigen::array(72,53,97)); Eigen::TensorMap > gpu_out(d_out, Eigen::array(72,53,97)); gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3; assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 72; ++i) { for (int j = 0; j < 53; ++j) { for (int k = 0; k < 97; ++k) { VERIFY_IS_APPROX(out(Eigen::array(i,j,k)), in1(Eigen::array(i,j,k)) + in2(Eigen::array(i,j,k)) * in3(Eigen::array(i,j,k))); } } } cudaFree(d_in1); cudaFree(d_in2); cudaFree(d_in3); cudaFree(d_out); } void test_cuda_reduction() { Tensor in1(72,53,97,113); Tensor out(72,97); in1.setRandom(); std::size_t in1_bytes = in1.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_in1; float* d_out; cudaMalloc((void**)(&d_in1), in1_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_in1(d_in1, 72,53,97,113); Eigen::TensorMap > gpu_out(d_out, 72,97); array reduction_axis; reduction_axis[0] = 1; reduction_axis[1] = 3; gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 72; ++i) { for (int j = 0; j < 97; ++j) { float expected = 0; for (int k = 0; k < 53; ++k) { for (int l = 0; l < 113; ++l) { expected = std::max(expected, in1(i, k, j, l)); } } VERIFY_IS_APPROX(out(i,j), expected); } } cudaFree(d_in1); cudaFree(d_out); } template void test_cuda_contraction() { // with these dimensions, the output has 300 * 140 elements, which is // more than 30 * 1024, which is the number of threads in blocks on // a 15 SM GK110 GPU Tensor t_left(6, 50, 3, 31); Tensor t_right(Eigen::array(3, 31, 7, 20, 1)); Tensor t_result(Eigen::array(6, 50, 7, 20, 1)); t_left.setRandom(); t_right.setRandom(); std::size_t t_left_bytes = t_left.size() * sizeof(float); std::size_t t_right_bytes = t_right.size() * sizeof(float); std::size_t t_result_bytes = t_result.size() * sizeof(float); float* d_t_left; float* d_t_right; float* d_t_result; cudaMalloc((void**)(&d_t_left), t_left_bytes); cudaMalloc((void**)(&d_t_right), t_right_bytes); cudaMalloc((void**)(&d_t_result), t_result_bytes); cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_t_left(d_t_left, 6, 50, 3, 31); Eigen::TensorMap > gpu_t_right(d_t_right, 3, 31, 7, 20, 1); Eigen::TensorMap > gpu_t_result(d_t_result, 6, 50, 7, 20, 1); typedef Eigen::Map > MapXf; MapXf m_left(t_left.data(), 300, 93); MapXf m_right(t_right.data(), 93, 140); Eigen::Matrix m_result(300, 140); typedef Tensor::DimensionPair DimPair; Eigen::array dims; dims[0] = DimPair(2, 0); dims[1] = DimPair(3, 1); m_result = m_left * m_right; gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); cudaMemcpy(t_result.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) { if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) { std::cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << m_result.data()[i] << std::endl; assert(false); } } cudaFree(d_t_left); cudaFree(d_t_right); cudaFree(d_t_result); } template void test_cuda_convolution_1d() { Tensor input(74,37,11,137); Tensor kernel(4); Tensor out(74,34,11,137); input = input.constant(10.0f) + input.random(); kernel = kernel.constant(7.0f) + kernel.random(); std::size_t input_bytes = input.size() * sizeof(float); std::size_t kernel_bytes = kernel.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_input; float* d_kernel; float* d_out; cudaMalloc((void**)(&d_input), input_bytes); cudaMalloc((void**)(&d_kernel), kernel_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_input(d_input, 74,37,11,137); Eigen::TensorMap > gpu_kernel(d_kernel, 4); Eigen::TensorMap > gpu_out(d_out, 74,34,11,137); Eigen::array dims(1); gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 74; ++i) { for (int j = 0; j < 34; ++j) { for (int k = 0; k < 11; ++k) { for (int l = 0; l < 137; ++l) { const float result = out(i,j,k,l); const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) + input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3); VERIFY_IS_APPROX(result, expected); } } } } cudaFree(d_input); cudaFree(d_kernel); cudaFree(d_out); } void test_cuda_convolution_inner_dim_col_major_1d() { Tensor input(74,9,11,7); Tensor kernel(4); Tensor out(71,9,11,7); input = input.constant(10.0f) + input.random(); kernel = kernel.constant(7.0f) + kernel.random(); std::size_t input_bytes = input.size() * sizeof(float); std::size_t kernel_bytes = kernel.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_input; float* d_kernel; float* d_out; cudaMalloc((void**)(&d_input), input_bytes); cudaMalloc((void**)(&d_kernel), kernel_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_input(d_input,74,9,11,7); Eigen::TensorMap > gpu_kernel(d_kernel,4); Eigen::TensorMap > gpu_out(d_out,71,9,11,7); Eigen::array dims(0); gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 71; ++i) { for (int j = 0; j < 9; ++j) { for (int k = 0; k < 11; ++k) { for (int l = 0; l < 7; ++l) { const float result = out(i,j,k,l); const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) + input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3); VERIFY_IS_APPROX(result, expected); } } } } cudaFree(d_input); cudaFree(d_kernel); cudaFree(d_out); } void test_cuda_convolution_inner_dim_row_major_1d() { Tensor input(7,9,11,74); Tensor kernel(4); Tensor out(7,9,11,71); input = input.constant(10.0f) + input.random(); kernel = kernel.constant(7.0f) + kernel.random(); std::size_t input_bytes = input.size() * sizeof(float); std::size_t kernel_bytes = kernel.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_input; float* d_kernel; float* d_out; cudaMalloc((void**)(&d_input), input_bytes); cudaMalloc((void**)(&d_kernel), kernel_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_input(d_input, 7,9,11,74); Eigen::TensorMap > gpu_kernel(d_kernel, 4); Eigen::TensorMap > gpu_out(d_out, 7,9,11,71); Eigen::array dims(3); gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 7; ++i) { for (int j = 0; j < 9; ++j) { for (int k = 0; k < 11; ++k) { for (int l = 0; l < 71; ++l) { const float result = out(i,j,k,l); const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) + input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3); VERIFY_IS_APPROX(result, expected); } } } } cudaFree(d_input); cudaFree(d_kernel); cudaFree(d_out); } template void test_cuda_convolution_2d() { Tensor input(74,37,11,137); Tensor kernel(3,4); Tensor out(74,35,8,137); input = input.constant(10.0f) + input.random(); kernel = kernel.constant(7.0f) + kernel.random(); std::size_t input_bytes = input.size() * sizeof(float); std::size_t kernel_bytes = kernel.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_input; float* d_kernel; float* d_out; cudaMalloc((void**)(&d_input), input_bytes); cudaMalloc((void**)(&d_kernel), kernel_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_input(d_input,74,37,11,137); Eigen::TensorMap > gpu_kernel(d_kernel,3,4); Eigen::TensorMap > gpu_out(d_out,74,35,8,137); Eigen::array dims(1,2); gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 74; ++i) { for (int j = 0; j < 35; ++j) { for (int k = 0; k < 8; ++k) { for (int l = 0; l < 137; ++l) { const float result = out(i,j,k,l); const float expected = input(i,j+0,k+0,l) * kernel(0,0) + input(i,j+1,k+0,l) * kernel(1,0) + input(i,j+2,k+0,l) * kernel(2,0) + input(i,j+0,k+1,l) * kernel(0,1) + input(i,j+1,k+1,l) * kernel(1,1) + input(i,j+2,k+1,l) * kernel(2,1) + input(i,j+0,k+2,l) * kernel(0,2) + input(i,j+1,k+2,l) * kernel(1,2) + input(i,j+2,k+2,l) * kernel(2,2) + input(i,j+0,k+3,l) * kernel(0,3) + input(i,j+1,k+3,l) * kernel(1,3) + input(i,j+2,k+3,l) * kernel(2,3); VERIFY_IS_APPROX(result, expected); } } } } cudaFree(d_input); cudaFree(d_kernel); cudaFree(d_out); } template void test_cuda_convolution_3d() { Tensor input(Eigen::array(74,37,11,137,17)); Tensor kernel(3,4,2); Tensor out(Eigen::array(74,35,8,136,17)); input = input.constant(10.0f) + input.random(); kernel = kernel.constant(7.0f) + kernel.random(); std::size_t input_bytes = input.size() * sizeof(float); std::size_t kernel_bytes = kernel.size() * sizeof(float); std::size_t out_bytes = out.size() * sizeof(float); float* d_input; float* d_kernel; float* d_out; cudaMalloc((void**)(&d_input), input_bytes); cudaMalloc((void**)(&d_kernel), kernel_bytes); cudaMalloc((void**)(&d_out), out_bytes); cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_input(d_input,74,37,11,137,17); Eigen::TensorMap > gpu_kernel(d_kernel,3,4,2); Eigen::TensorMap > gpu_out(d_out,74,35,8,136,17); Eigen::array dims(1,2,3); gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 74; ++i) { for (int j = 0; j < 35; ++j) { for (int k = 0; k < 8; ++k) { for (int l = 0; l < 136; ++l) { for (int m = 0; m < 17; ++m) { const float result = out(i,j,k,l,m); const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) + input(i,j+1,k+0,l+0,m) * kernel(1,0,0) + input(i,j+2,k+0,l+0,m) * kernel(2,0,0) + input(i,j+0,k+1,l+0,m) * kernel(0,1,0) + input(i,j+1,k+1,l+0,m) * kernel(1,1,0) + input(i,j+2,k+1,l+0,m) * kernel(2,1,0) + input(i,j+0,k+2,l+0,m) * kernel(0,2,0) + input(i,j+1,k+2,l+0,m) * kernel(1,2,0) + input(i,j+2,k+2,l+0,m) * kernel(2,2,0) + input(i,j+0,k+3,l+0,m) * kernel(0,3,0) + input(i,j+1,k+3,l+0,m) * kernel(1,3,0) + input(i,j+2,k+3,l+0,m) * kernel(2,3,0) + input(i,j+0,k+0,l+1,m) * kernel(0,0,1) + input(i,j+1,k+0,l+1,m) * kernel(1,0,1) + input(i,j+2,k+0,l+1,m) * kernel(2,0,1) + input(i,j+0,k+1,l+1,m) * kernel(0,1,1) + input(i,j+1,k+1,l+1,m) * kernel(1,1,1) + input(i,j+2,k+1,l+1,m) * kernel(2,1,1) + input(i,j+0,k+2,l+1,m) * kernel(0,2,1) + input(i,j+1,k+2,l+1,m) * kernel(1,2,1) + input(i,j+2,k+2,l+1,m) * kernel(2,2,1) + input(i,j+0,k+3,l+1,m) * kernel(0,3,1) + input(i,j+1,k+3,l+1,m) * kernel(1,3,1) + input(i,j+2,k+3,l+1,m) * kernel(2,3,1); VERIFY_IS_APPROX(result, expected); } } } } } cudaFree(d_input); cudaFree(d_kernel); cudaFree(d_out); } template void test_cuda_lgamma(const Scalar stddev) { Tensor in(72,97); in.setRandom(); in *= in.constant(stddev); Tensor out(72,97); out.setZero(); std::size_t bytes = in.size() * sizeof(Scalar); Scalar* d_in; Scalar* d_out; cudaMalloc((void**)(&d_in), bytes); cudaMalloc((void**)(&d_out), bytes); cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_in(d_in, 72, 97); Eigen::TensorMap > gpu_out(d_out, 72, 97); gpu_out.device(gpu_device) = gpu_in.lgamma(); assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 72; ++i) { for (int j = 0; j < 97; ++j) { VERIFY_IS_APPROX(out(i,j), (std::lgamma)(in(i,j))); } } cudaFree(d_in); cudaFree(d_out); } template void test_cuda_erf(const Scalar stddev) { Tensor in(72,97); in.setRandom(); in *= in.constant(stddev); Tensor out(72,97); out.setZero(); std::size_t bytes = in.size() * sizeof(Scalar); Scalar* d_in; Scalar* d_out; cudaMalloc((void**)(&d_in), bytes); cudaMalloc((void**)(&d_out), bytes); cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_in(d_in, 72, 97); Eigen::TensorMap > gpu_out(d_out, 72, 97); gpu_out.device(gpu_device) = gpu_in.erf(); assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 72; ++i) { for (int j = 0; j < 97; ++j) { VERIFY_IS_APPROX(out(i,j), (std::erf)(in(i,j))); } } cudaFree(d_in); cudaFree(d_out); } template void test_cuda_erfc(const Scalar stddev) { Tensor in(72,97); in.setRandom(); in *= in.constant(stddev); Tensor out(72,97); out.setZero(); std::size_t bytes = in.size() * sizeof(Scalar); Scalar* d_in; Scalar* d_out; cudaMalloc((void**)(&d_in), bytes); cudaMalloc((void**)(&d_out), bytes); cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap > gpu_in(d_in, 72, 97); Eigen::TensorMap > gpu_out(d_out, 72, 97); gpu_out.device(gpu_device) = gpu_in.erfc(); assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); for (int i = 0; i < 72; ++i) { for (int j = 0; j < 97; ++j) { VERIFY_IS_APPROX(out(i,j), (std::erfc)(in(i,j))); } } cudaFree(d_in); cudaFree(d_out); } void test_cxx11_tensor_cuda() { CALL_SUBTEST_1(test_cuda_elementwise_small()); CALL_SUBTEST_1(test_cuda_elementwise()); CALL_SUBTEST_1(test_cuda_reduction()); CALL_SUBTEST_2(test_cuda_contraction()); CALL_SUBTEST_2(test_cuda_contraction()); CALL_SUBTEST_3(test_cuda_convolution_1d()); CALL_SUBTEST_3(test_cuda_convolution_1d()); CALL_SUBTEST_3(test_cuda_convolution_inner_dim_col_major_1d()); CALL_SUBTEST_3(test_cuda_convolution_inner_dim_row_major_1d()); CALL_SUBTEST_3(test_cuda_convolution_2d()); CALL_SUBTEST_3(test_cuda_convolution_2d()); CALL_SUBTEST_3(test_cuda_convolution_3d()); CALL_SUBTEST_3(test_cuda_convolution_3d()); CALL_SUBTEST_4(test_cuda_lgamma(1.0f)); CALL_SUBTEST_4(test_cuda_lgamma(100.0f)); CALL_SUBTEST_4(test_cuda_lgamma(0.01f)); CALL_SUBTEST_4(test_cuda_lgamma(0.001f)); CALL_SUBTEST_4(test_cuda_erf(1.0f)); CALL_SUBTEST_4(test_cuda_erf(100.0f)); CALL_SUBTEST_4(test_cuda_erf(0.01f)); CALL_SUBTEST_4(test_cuda_erf(0.001f)); CALL_SUBTEST_4(test_cuda_erfc(1.0f)); // CALL_SUBTEST(test_cuda_erfc(100.0f)); CALL_SUBTEST_4(test_cuda_erfc(5.0f)); // CUDA erfc lacks precision for large inputs CALL_SUBTEST_4(test_cuda_erfc(0.01f)); CALL_SUBTEST_4(test_cuda_erfc(0.001f)); CALL_SUBTEST_4(test_cuda_lgamma(1.0)); CALL_SUBTEST_4(test_cuda_lgamma(100.0)); CALL_SUBTEST_4(test_cuda_lgamma(0.01)); CALL_SUBTEST_4(test_cuda_lgamma(0.001)); CALL_SUBTEST_4(test_cuda_erf(1.0)); CALL_SUBTEST_4(test_cuda_erf(100.0)); CALL_SUBTEST_4(test_cuda_erf(0.01)); CALL_SUBTEST_4(test_cuda_erf(0.001)); CALL_SUBTEST_4(test_cuda_erfc(1.0)); // CALL_SUBTEST(test_cuda_erfc(100.0)); CALL_SUBTEST_4(test_cuda_erfc(5.0)); // CUDA erfc lacks precision for large inputs CALL_SUBTEST_4(test_cuda_erfc(0.01)); CALL_SUBTEST_4(test_cuda_erfc(0.001)); }