// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_TEST_PART_7) // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway: // TODO do the same for MSVC? #if defined(__clang__) # if (__clang_major__ * 100 + __clang_minor__) >= 308 # pragma clang diagnostic ignored "-Wdouble-promotion" # endif #elif defined(__GNUC__) // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this. # pragma GCC diagnostic ignored "-Wdouble-promotion" #endif #endif #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3) #ifndef EIGEN_DONT_VECTORIZE #define EIGEN_DONT_VECTORIZE #endif #endif static bool g_called; #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same::value); } #include "main.h" using namespace std; #define VERIFY_MIX_SCALAR(XPR,REF) \ g_called = false; \ VERIFY_IS_APPROX(XPR,REF); \ VERIFY( g_called && #XPR" not properly optimized"); template void mixingtypes(int size = SizeAtCompileType) { typedef std::complex CF; typedef std::complex CD; typedef Matrix Mat_f; typedef Matrix Mat_d; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cf; typedef Matrix, SizeAtCompileType, SizeAtCompileType> Mat_cd; typedef Matrix Vec_f; typedef Matrix Vec_d; typedef Matrix, SizeAtCompileType, 1> Vec_cf; typedef Matrix, SizeAtCompileType, 1> Vec_cd; Mat_f mf = Mat_f::Random(size,size); Mat_d md = mf.template cast(); //Mat_d rd = md; Mat_cf mcf = Mat_cf::Random(size,size); Mat_cd mcd = mcf.template cast >(); Mat_cd rcd = mcd; Vec_f vf = Vec_f::Random(size,1); Vec_d vd = vf.template cast(); Vec_cf vcf = Vec_cf::Random(size,1); Vec_cd vcd = vcf.template cast >(); float sf = internal::random(); double sd = internal::random(); complex scf = internal::random >(); complex scd = internal::random >(); mf+mf; float epsf = std::sqrt(std::numeric_limits ::min EIGEN_EMPTY ()); double epsd = std::sqrt(std::numeric_limits::min EIGEN_EMPTY ()); while(std::abs(sf )(); while(std::abs(sd )(); while(std::abs(scf)(); while(std::abs(scd)(); // check scalar products VERIFY_MIX_SCALAR(vcf * sf , vcf * complex(sf)); VERIFY_MIX_SCALAR(sd * vcd , complex(sd) * vcd); VERIFY_MIX_SCALAR(vf * scf , vf.template cast >() * scf); VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast >()); VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex(2)); VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex(2.1)); VERIFY_MIX_SCALAR(2 * vcf, vcf * complex(2)); VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex(2.1)); // check scalar quotients VERIFY_MIX_SCALAR(vcf / sf , vcf / complex(sf)); VERIFY_MIX_SCALAR(vf / scf , vf.template cast >() / scf); VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast >().array() / scf); VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast >().array()); // check scalar increment VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex(sf)); VERIFY_MIX_SCALAR(sd + vcd.array(), complex(sd) + vcd.array()); VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast >().array() + scf); VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast >().array()); // check scalar subtractions VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex(sf)); VERIFY_MIX_SCALAR(sd - vcd.array(), complex(sd) - vcd.array()); VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast >().array() - scf); VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast >().array()); // check scalar powers VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex(sf)) ); VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex(sf)) ); VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex(sd), vcd.array()) ); VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast >().array(), scf) ); VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast >().array(), scf) ); VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast >().array()) ); // check dot product vf.dot(vf); VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast >())); // check diagonal product VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast >().asDiagonal() * mcf); VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast >()); VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast >().asDiagonal()); VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast >() * vcd.asDiagonal()); // check inner product VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast >().transpose() * vcf).value()); // check outer product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); // coeff wise product VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast >() * vcf.transpose()).eval()); Mat_cd mcd2 = mcd; VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast >()); // check matrix-matrix products VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast().eval()*mcd); VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast()); VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast().eval()*mcd); VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast()); VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast()*mcf); VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast()); VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast()*mcf); VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast()); VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast().eval().adjoint()*mcd); VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast()); VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast().eval().adjoint()*mcd.adjoint()); VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast().adjoint()); VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast().eval()*mcd.adjoint()); VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast().adjoint()); VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast().eval().adjoint()*mcf); VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast()); VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast().eval().adjoint()*mcf.adjoint()); VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast().adjoint()); VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast().eval()*mcf.adjoint()); VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast().adjoint()); VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast().eval()*vcf); VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast()).eval()*vcf); VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast()); VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast()); VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast().eval()); VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast().eval()); VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast().eval()*mcf); VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast().eval()*mcf); VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast().eval()*vcd); VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast()).eval()*vcd); VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast().eval()); VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast().eval()); VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast().eval()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast().eval()); VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast().eval()*mcd); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast().eval()*mcd); VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView(), sd*vcd.adjoint()*md.template cast().eval().template triangularView()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView(), scd*vcd.adjoint()*md.template cast().eval().template triangularView()); VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView(), sd*vcd.adjoint()*md.transpose().template cast().eval().template triangularView()); VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView(), scd*vcd.adjoint()*md.transpose().template cast().eval().template triangularView()); VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView(), sd*vd.adjoint().template cast().eval()*mcd.template triangularView()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView(), scd*vd.adjoint().template cast().eval()*mcd.template triangularView()); VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView(), sd*vd.adjoint().template cast().eval()*mcd.transpose().template triangularView()); VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView(), scd*vd.adjoint().template cast().eval()*mcd.transpose().template triangularView()); // Not supported yet: trmm // VERIFY_IS_APPROX(sd*mcd*md.template triangularView(), sd*mcd*md.template cast().eval().template triangularView()); // VERIFY_IS_APPROX(scd*mcd*md.template triangularView(), scd*mcd*md.template cast().eval().template triangularView()); // VERIFY_IS_APPROX(sd*md*mcd.template triangularView(), sd*md.template cast().eval()*mcd.template triangularView()); // VERIFY_IS_APPROX(scd*md*mcd.template triangularView(), scd*md.template cast().eval()*mcd.template triangularView()); // Not supported yet: symv // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView(), sd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView(), scd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView(), sd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView(), scd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); // Not supported yet: symm // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView(), sd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView(), scd*vcd.adjoint()*md.template cast().eval().template selfadjointView()); // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView(), sd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView(), scd*vd.adjoint().template cast().eval()*mcd.template selfadjointView()); rcd.setZero(); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = sd * mcd * md), Mat_cd((sd * mcd * md.template cast().eval()).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = sd * md * mcd), Mat_cd((sd * md.template cast().eval() * mcd).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = scd * mcd * md), Mat_cd((scd * mcd * md.template cast().eval()).template triangularView())); VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView() = scd * md * mcd), Mat_cd((scd * md.template cast().eval() * mcd).template triangularView())); VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast().eval().array() * mcd.array() ); VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast().eval().array() ); VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast().eval().array() + mcd.array() ); VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast().eval().array() ); VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast().eval().array() - mcd.array() ); VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast().eval().array() ); if(mcd.array().abs().minCoeff()>epsd) { VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast().eval().array() / mcd.array() ); } if(md.array().abs().minCoeff()>epsd) { VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast().eval().array() ); } if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd) { VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast().eval().array().pow(mcd.array()) ); VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast().eval().array()) ); VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast().eval().array().pow(mcd.array()) ); VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast().eval().array()) ); } rcd = mcd; VERIFY_IS_APPROX( rcd = md, md.template cast().eval() ); rcd = mcd; VERIFY_IS_APPROX( rcd += md, mcd + md.template cast().eval() ); rcd = mcd; VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast().eval() ); rcd = mcd; VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast().eval().array() ); rcd = mcd; if(md.array().abs().minCoeff()>epsd) { VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast().eval().array() ); } rcd = mcd; VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast().eval()) + mcd*(md.template cast().eval())); VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast()) ); rcd = mcd; VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast()) ); rcd = mcd; VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast()) ); VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast()) ); rcd = mcd; VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast()) ); rcd = mcd; VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast()) ); } EIGEN_DECLARE_TEST(mixingtypes) { g_called = false; // Silence -Wunneeded-internal-declaration. for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(mixingtypes<3>()); CALL_SUBTEST_2(mixingtypes<4>()); CALL_SUBTEST_3(mixingtypes(internal::random(1,EIGEN_TEST_MAX_SIZE))); CALL_SUBTEST_4(mixingtypes<3>()); CALL_SUBTEST_5(mixingtypes<4>()); CALL_SUBTEST_6(mixingtypes(internal::random(1,EIGEN_TEST_MAX_SIZE))); } }