// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015-2016 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // workaround issue between gcc >= 4.7 and cuda 5.5 #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) #undef _GLIBCXX_ATOMIC_BUILTINS #undef _GLIBCXX_USE_INT128 #endif #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #include "main.h" #include "gpu_common.h" // Check that dense modules can be properly parsed by nvcc #include // struct Foo{ // EIGEN_DEVICE_FUNC // void operator()(int i, const float* mats, float* vecs) const { // using namespace Eigen; // // Matrix3f M(data); // // Vector3f x(data+9); // // Map(data+9) = M.inverse() * x; // Matrix3f M(mats+i/16); // Vector3f x(vecs+i*3); // // using std::min; // // using std::sqrt; // Map(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); // } // }; template struct coeff_wise { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T x1(in+i); T x2(in+i+1); T x3(in+i+2); Map res(out+i*T::MaxSizeAtCompileTime); res.array() += (in[0] * x1 + x2).array() * x3.array(); } }; template struct complex_sqrt { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef typename T::Scalar ComplexType; typedef typename T::Scalar::value_type ValueType; const int num_special_inputs = 18; if (i == 0) { const ValueType nan = std::numeric_limits::quiet_NaN(); typedef Eigen::Vector SpecialInputs; SpecialInputs special_in; special_in.setZero(); int idx = 0; special_in[idx++] = ComplexType(0, 0); special_in[idx++] = ComplexType(-0, 0); special_in[idx++] = ComplexType(0, -0); special_in[idx++] = ComplexType(-0, -0); // GCC's fallback sqrt implementation fails for inf inputs. // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if // clang includes the GCC header (which temporarily disables // _GLIBCXX_USE_C99_COMPLEX) #if !defined(_GLIBCXX_COMPLEX) || \ (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX)) const ValueType inf = std::numeric_limits::infinity(); special_in[idx++] = ComplexType(1.0, inf); special_in[idx++] = ComplexType(nan, inf); special_in[idx++] = ComplexType(1.0, -inf); special_in[idx++] = ComplexType(nan, -inf); special_in[idx++] = ComplexType(-inf, 1.0); special_in[idx++] = ComplexType(inf, 1.0); special_in[idx++] = ComplexType(-inf, -1.0); special_in[idx++] = ComplexType(inf, -1.0); special_in[idx++] = ComplexType(-inf, nan); special_in[idx++] = ComplexType(inf, nan); #endif special_in[idx++] = ComplexType(1.0, nan); special_in[idx++] = ComplexType(nan, 1.0); special_in[idx++] = ComplexType(nan, -1.0); special_in[idx++] = ComplexType(nan, nan); Map special_out(out); special_out = special_in.cwiseSqrt(); } T x1(in + i); Map res(out + num_special_inputs + i*T::MaxSizeAtCompileTime); res = x1.cwiseSqrt(); } }; template struct complex_operators { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef typename T::Scalar ComplexType; typedef typename T::Scalar::value_type ValueType; const int num_scalar_operators = 24; const int num_vector_operators = 23; // no unary + operator. int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime); // Scalar operators. const ComplexType a = in[i]; const ComplexType b = in[i + 1]; out[out_idx++] = +a; out[out_idx++] = -a; out[out_idx++] = a + b; out[out_idx++] = a + numext::real(b); out[out_idx++] = numext::real(a) + b; out[out_idx++] = a - b; out[out_idx++] = a - numext::real(b); out[out_idx++] = numext::real(a) - b; out[out_idx++] = a * b; out[out_idx++] = a * numext::real(b); out[out_idx++] = numext::real(a) * b; out[out_idx++] = a / b; out[out_idx++] = a / numext::real(b); out[out_idx++] = numext::real(a) / b; #if !defined(EIGEN_COMP_MSVC) out[out_idx] = a; out[out_idx++] += b; out[out_idx] = a; out[out_idx++] -= b; out[out_idx] = a; out[out_idx++] *= b; out[out_idx] = a; out[out_idx++] /= b; #endif const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); out[out_idx++] = (a == b ? true_value : false_value); out[out_idx++] = (a == numext::real(b) ? true_value : false_value); out[out_idx++] = (numext::real(a) == b ? true_value : false_value); out[out_idx++] = (a != b ? true_value : false_value); out[out_idx++] = (a != numext::real(b) ? true_value : false_value); out[out_idx++] = (numext::real(a) != b ? true_value : false_value); // Vector versions. T x1(in + i); T x2(in + i + 1); const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators; const int size = T::MaxSizeAtCompileTime; int block_idx = 0; Map> res(out + out_idx, res_size); res.segment(block_idx, size) = -x1; block_idx += size; res.segment(block_idx, size) = x1 + x2; block_idx += size; res.segment(block_idx, size) = x1 + x2.real(); block_idx += size; res.segment(block_idx, size) = x1.real() + x2; block_idx += size; res.segment(block_idx, size) = x1 - x2; block_idx += size; res.segment(block_idx, size) = x1 - x2.real(); block_idx += size; res.segment(block_idx, size) = x1.real() - x2; block_idx += size; res.segment(block_idx, size) = x1.array() * x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() * x2.real().array(); block_idx += size; res.segment(block_idx, size) = x1.real().array() * x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() / x2.array(); block_idx += size; res.segment(block_idx, size) = x1.array() / x2.real().array(); block_idx += size; res.segment(block_idx, size) = x1.real().array() / x2.array(); block_idx += size; #if !defined(EIGEN_COMP_MSVC) res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2; block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2; block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array(); block_idx += size; res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array(); block_idx += size; #endif const T true_vector = T::Constant(true_value); const T false_vector = T::Constant(false_value); res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); block_idx += size; // Mixing types in equality comparison does not work. // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); // block_idx += size; // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector); // block_idx += size; res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); block_idx += size; // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); // block_idx += size; // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); // block_idx += size; } }; template struct replicate { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T x1(in+i); int step = x1.size() * 4; int stride = 3 * step; typedef Map > MapType; MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); } }; template struct alloc_new_delete { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { int offset = 2*i*T::MaxSizeAtCompileTime; T* x = new T(in + offset); Eigen::Map u(out + offset); u = *x; delete x; offset += T::MaxSizeAtCompileTime; T* y = new T[1]; y[0] = T(in + offset); Eigen::Map v(out + offset); v = y[0]; delete[] y; } }; template struct redux { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; int N = 10; T x1(in+i); out[i*N+0] = x1.minCoeff(); out[i*N+1] = x1.maxCoeff(); out[i*N+2] = x1.sum(); out[i*N+3] = x1.prod(); out[i*N+4] = x1.matrix().squaredNorm(); out[i*N+5] = x1.matrix().norm(); out[i*N+6] = x1.colwise().sum().maxCoeff(); out[i*N+7] = x1.rowwise().maxCoeff().sum(); out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); } }; template struct prod_test { EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const { using namespace Eigen; typedef Matrix T3; T1 x1(in+i); T2 x2(in+i+1); Map res(out+i*T3::MaxSizeAtCompileTime); res += in[i] * x1 * x2; } }; template struct diagonal { EIGEN_DEVICE_FUNC void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const { using namespace Eigen; T1 x1(in+i); Map res(out+i*T2::MaxSizeAtCompileTime); res += x1.diagonal(); } }; template struct eigenvalues_direct { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef Matrix Vec; T M(in+i); Map res(out+i*Vec::MaxSizeAtCompileTime); T A = M*M.adjoint(); SelfAdjointEigenSolver eig; eig.computeDirect(A); res = eig.eigenvalues(); } }; template struct eigenvalues { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; typedef Matrix Vec; T M(in+i); Map res(out+i*Vec::MaxSizeAtCompileTime); T A = M*M.adjoint(); SelfAdjointEigenSolver eig; eig.compute(A); res = eig.eigenvalues(); } }; template struct matrix_inverse { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { using namespace Eigen; T M(in+i); Map res(out+i*T::MaxSizeAtCompileTime); res = M.inverse(); } }; template struct numeric_limits_test { EIGEN_DEVICE_FUNC void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const { EIGEN_UNUSED_VARIABLE(in) int out_idx = i * 5; out[out_idx++] = numext::numeric_limits::epsilon(); out[out_idx++] = (numext::numeric_limits::max)(); out[out_idx++] = (numext::numeric_limits::min)(); out[out_idx++] = numext::numeric_limits::infinity(); out[out_idx++] = numext::numeric_limits::quiet_NaN(); } }; template bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only { if (a.rows() != b.rows()) { return false; } if (a.cols() != b.cols()) { return false; } for (Index r = 0; r < a.rows(); ++r) { for (Index c = 0; c < a.cols(); ++c) { if (a(r, c) != b(r, c) && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) && !test_isApprox(a(r, c), b(r, c))) { return false; } } } return true; } template void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) { Output out_ref, out_gpu; #if !defined(EIGEN_GPU_COMPILE_PHASE) out_ref = out_gpu = out; #else EIGEN_UNUSED_VARIABLE(in); EIGEN_UNUSED_VARIABLE(out); #endif run_on_cpu (ker, n, in, out_ref); run_on_gpu(ker, n, in, out_gpu); #if !defined(EIGEN_GPU_COMPILE_PHASE) verifyIsApproxWithInfsNans(out_ref, out_gpu); #endif } EIGEN_DECLARE_TEST(gpu_basic) { ei_test_init_gpu(); int nthreads = 100; Eigen::VectorXf in, out; Eigen::VectorXcf cfin, cfout; #if !defined(EIGEN_GPU_COMPILE_PHASE) int data_size = nthreads * 512; in.setRandom(data_size); out.setConstant(data_size, -1); cfin.setRandom(data_size); cfout.setConstant(data_size, -1); #endif CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise(), nthreads, in, out) ); #if !defined(EIGEN_USE_HIP) // FIXME // These subtests result in a compile failure on the HIP platform // // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: // base class 'internal::dense_xpr_base, -1, -1> >::type' // (aka 'ArrayBase, -1, -1> >') has protected default constructor CALL_SUBTEST( run_and_compare_to_gpu(replicate(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(replicate(), nthreads, in, out) ); // HIP does not support new/delete on device. CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete(), nthreads, in, out) ); #endif CALL_SUBTEST( run_and_compare_to_gpu(redux(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(redux(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(prod_test(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(prod_test(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(diagonal(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(diagonal(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct(), nthreads, in, out) ); CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct(), nthreads, in, out) ); // Test std::complex. CALL_SUBTEST( run_and_compare_to_gpu(complex_operators(), nthreads, cfin, cfout) ); CALL_SUBTEST( test_with_infs_nans(complex_sqrt(), nthreads, cfin, cfout) ); // numeric_limits CALL_SUBTEST( test_with_infs_nans(numeric_limits_test(), 1, in, out) ); #if defined(__NVCC__) // FIXME // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues(), nthreads, in, out) ); typedef Matrix Matrix6f; CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues(), nthreads, in, out) ); #endif }