// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_USE_GPU #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> using Eigen::Tensor; template <int Layout> void test_gpu_simple_argmax() { Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97)); Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1)); Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1)); in.setRandom(); in *= in.constant(100.0); in(0, 0, 0) = -1000.0; in(71, 52, 96) = 1000.0; std::size_t in_bytes = in.size() * sizeof(double); std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); double* d_in; DenseIndex* d_out_max; DenseIndex* d_out_min; gpuMalloc((void**)(&d_in), in_bytes); gpuMalloc((void**)(&d_out_max), out_bytes); gpuMalloc((void**)(&d_out_min), out_bytes); gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice); Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97)); Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1)); Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1)); gpu_out_max.device(gpu_device) = gpu_in.argmax(); gpu_out_min.device(gpu_device) = gpu_in.argmin(); assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1); VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0); gpuFree(d_in); gpuFree(d_out_max); gpuFree(d_out_min); } template <int DataLayout> void test_gpu_argmax_dim() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); std::vector<int> dims; dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); for (int dim = 0; dim < 4; ++dim) { tensor.setRandom(); tensor = (tensor + tensor.constant(0.5)).log(); array<DenseIndex, 3> out_shape; for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); array<DenseIndex, 4> ix; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; if (ix[dim] != 0) continue; // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 tensor(ix) = 10.0; } } } } std::size_t in_bytes = tensor.size() * sizeof(float); std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); float* d_in; DenseIndex* d_out; gpuMalloc((void**)(&d_in), in_bytes); gpuMalloc((void**)(&d_out), out_bytes); gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); gpu_out.device(gpu_device) = gpu_in.argmax(dim); assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); VERIFY_IS_EQUAL(tensor_arg.size(), size_t(2*3*5*7 / tensor.dimension(dim))); for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { // Expect max to be in the first index of the reduced dimension VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); } for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; if (ix[dim] != tensor.dimension(dim) - 1) continue; // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 tensor(ix) = 20.0; } } } } gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); gpu_out.device(gpu_device) = gpu_in.argmax(dim); assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { // Expect max to be in the last index of the reduced dimension VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); } gpuFree(d_in); gpuFree(d_out); } } template <int DataLayout> void test_gpu_argmin_dim() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); std::vector<int> dims; dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); for (int dim = 0; dim < 4; ++dim) { tensor.setRandom(); tensor = (tensor + tensor.constant(0.5)).log(); array<DenseIndex, 3> out_shape; for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); array<DenseIndex, 4> ix; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; if (ix[dim] != 0) continue; // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 tensor(ix) = -10.0; } } } } std::size_t in_bytes = tensor.size() * sizeof(float); std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); float* d_in; DenseIndex* d_out; gpuMalloc((void**)(&d_in), in_bytes); gpuMalloc((void**)(&d_out), out_bytes); gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); Eigen::GpuStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); gpu_out.device(gpu_device) = gpu_in.argmin(dim); assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); VERIFY_IS_EQUAL(tensor_arg.size(), 2*3*5*7 / tensor.dimension(dim)); for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { // Expect min to be in the first index of the reduced dimension VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); } for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; if (ix[dim] != tensor.dimension(dim) - 1) continue; // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 tensor(ix) = -20.0; } } } } gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice); gpu_out.device(gpu_device) = gpu_in.argmin(dim); assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess); assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess); for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { // Expect max to be in the last index of the reduced dimension VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); } gpuFree(d_in); gpuFree(d_out); } } EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu) { CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>()); CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>()); CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>()); CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>()); CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>()); CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>()); }