// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include template static void test_full_reductions_sycl(const Eigen::SyclDevice& sycl_device) { const int num_rows = 452; const int num_cols = 765; array tensorRange = {{num_rows, num_cols}}; Tensor in(tensorRange); Tensor full_redux; Tensor full_redux_gpu; in.setRandom(); full_redux = in.sum(); DataType* gpu_in_data = static_cast(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType))); DataType* gpu_out_data =(DataType*)sycl_device.allocate(sizeof(DataType)); TensorMap > in_gpu(gpu_in_data, tensorRange); TensorMap > out_gpu(gpu_out_data); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType)); out_gpu.device(sycl_device) = in_gpu.sum(); sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(DataType)); // Check that the CPU and GPU reductions return the same result. VERIFY_IS_APPROX(full_redux_gpu(), full_redux()); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } template static void test_first_dim_reductions_sycl(const Eigen::SyclDevice& sycl_device) { int dim_x = 145; int dim_y = 1; int dim_z = 67; array tensorRange = {{dim_x, dim_y, dim_z}}; Eigen::array red_axis; red_axis[0] = 0; array reduced_tensorRange = {{dim_y, dim_z}}; Tensor in(tensorRange); Tensor redux(reduced_tensorRange); Tensor redux_gpu(reduced_tensorRange); in.setRandom(); redux= in.sum(red_axis); DataType* gpu_in_data = static_cast(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType))); DataType* gpu_out_data = static_cast(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(DataType))); TensorMap > in_gpu(gpu_in_data, tensorRange); TensorMap > out_gpu(gpu_out_data, reduced_tensorRange); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType)); out_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(DataType)); // Check that the CPU and GPU reductions return the same result. for(int j=0; j static void test_last_dim_reductions_sycl(const Eigen::SyclDevice &sycl_device) { int dim_x = 567; int dim_y = 1; int dim_z = 47; array tensorRange = {{dim_x, dim_y, dim_z}}; Eigen::array red_axis; red_axis[0] = 2; array reduced_tensorRange = {{dim_x, dim_y}}; Tensor in(tensorRange); Tensor redux(reduced_tensorRange); Tensor redux_gpu(reduced_tensorRange); in.setRandom(); redux= in.sum(red_axis); DataType* gpu_in_data = static_cast(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(DataType))); DataType* gpu_out_data = static_cast(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(DataType))); TensorMap > in_gpu(gpu_in_data, tensorRange); TensorMap > out_gpu(gpu_out_data, reduced_tensorRange); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(DataType)); out_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(DataType)); // Check that the CPU and GPU reductions return the same result. for(int j=0; j void sycl_reduction_test_per_device(dev_Selector s){ QueueInterface queueInterface(s); auto sycl_device = Eigen::SyclDevice(&queueInterface); test_full_reductions_sycl(sycl_device); test_first_dim_reductions_sycl(sycl_device); test_last_dim_reductions_sycl(sycl_device); test_full_reductions_sycl(sycl_device); test_first_dim_reductions_sycl(sycl_device); test_last_dim_reductions_sycl(sycl_device); } void test_cxx11_tensor_reduction_sycl() { printf("Test on GPU: OpenCL\n"); CALL_SUBTEST(sycl_reduction_test_per_device((cl::sycl::gpu_selector()))); printf("repeating the test on CPU: OpenCL\n"); CALL_SUBTEST(sycl_reduction_test_per_device((cl::sycl::cpu_selector()))); printf("repeating the test on CPU: HOST\n"); CALL_SUBTEST(sycl_reduction_test_per_device((cl::sycl::host_selector()))); printf("Test Passed******************\n" ); }