// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" // check minor separately in order to avoid the possible creation of a zero-sized // array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic. // Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage // but this is probably not bad to raise such an error at compile time... template struct CheckMinor { typedef Matrix MatrixType; CheckMinor(MatrixType& m1, int r1, int c1) { int rows = m1.rows(); int cols = m1.cols(); Matrix mi = m1.minor(0,0).eval(); VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1)); mi = m1.minor(r1,c1); VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1)); //check operator(), both constant and non-constant, on minor() m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0); } }; template struct CheckMinor { typedef Matrix MatrixType; CheckMinor(MatrixType&, int, int) {} }; template void submatrices(const MatrixType& m) { /* this test covers the following files: Row.h Column.h Block.h Minor.h DiagonalCoeffs.h */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; typedef Matrix RowVectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), ones = MatrixType::Ones(rows, cols), identity = Matrix ::Identity(rows, rows), square = Matrix ::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), v3 = VectorType::Random(rows), vzero = VectorType::Zero(rows); Scalar s1 = ei_random(); int r1 = ei_random(0,rows-1); int r2 = ei_random(r1,rows-1); int c1 = ei_random(0,cols-1); int c2 = ei_random(c1,cols-1); //check row() and col() VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1)); VERIFY_IS_APPROX(square.row(r1).dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1)); //check operator(), both constant and non-constant, on row() and col() m1.row(r1) += s1 * m1.row(r2); m1.col(c1) += s1 * m1.col(c2); //check block() Matrix b1(1,1); b1(0,0) = m1(r1,c1); RowVectorType br1(m1.block(r1,0,1,cols)); VectorType bc1(m1.block(0,c1,rows,1)); VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1)); VERIFY_IS_APPROX(m1.row(r1), br1); VERIFY_IS_APPROX(m1.col(c1), bc1); //check operator(), both constant and non-constant, on block() m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); //check minor() CheckMinor checkminor(m1,r1,c1); //check diagonal() VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal()); m2.diagonal() = 2 * m1.diagonal(); m2.diagonal()[0] *= 3; VERIFY_IS_APPROX(m2.diagonal()[0], static_cast(6) * m1.diagonal()[0]); const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2); const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5); if (rows>=5 && cols>=8) { // test fixed block() as lvalue m1.template block(1,1) *= s1; // test operator() on fixed block() both as constant and non-constant m1.template block(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); // check that fixed block() and block() agree Matrix b = m1.template block(3,3); VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols)); } if (rows>2) { // test sub vectors VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1)); VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2)); VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,2)); VERIFY_IS_APPROX(v1.template start<2>(), v1.template block<2>(0)); int i = rows-2; VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1)); VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2)); VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,2)); VERIFY_IS_APPROX(v1.template end<2>(), v1.template block<2>(i)); i = ei_random(0,rows-2); VERIFY_IS_APPROX(v1.block(i,2), v1.template block<2>(i)); } // stress some basic stuffs with block matrices VERIFY(ones.col(c1).sum() == Scalar(rows)); VERIFY(ones.row(r1).sum() == Scalar(cols)); VERIFY(ones.col(c1).dot(ones.col(c2)) == Scalar(rows)); VERIFY(ones.row(r1).dot(ones.row(r2)) == Scalar(cols)); } void test_submatrices() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( submatrices(Matrix()) ); CALL_SUBTEST( submatrices(Matrix4d()) ); CALL_SUBTEST( submatrices(MatrixXcf(3, 3)) ); CALL_SUBTEST( submatrices(MatrixXi(8, 12)) ); CALL_SUBTEST( submatrices(MatrixXcd(20, 20)) ); CALL_SUBTEST( submatrices(MatrixXf(20, 20)) ); } }