// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 20015 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // This unit test cannot be easily written to work with EIGEN_DEFAULT_TO_ROW_MAJOR #ifdef EIGEN_DEFAULT_TO_ROW_MAJOR #undef EIGEN_DEFAULT_TO_ROW_MAJOR #endif static long int nb_temporaries; inline void on_temporary_creation() { // here's a great place to set a breakpoint when debugging failures in this test! nb_temporaries++; } #define EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN { on_temporary_creation(); } #include "main.h" #include <Eigen/SparseCore> #define VERIFY_EVALUATION_COUNT(XPR,N) {\ nb_temporaries = 0; \ XPR; \ if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ VERIFY( (#XPR) && nb_temporaries==N ); \ } template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) { // verify that ref-to-const don't have LvalueBit typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; VERIFY( !(internal::traits<Ref<ConstPlainObjectType> >::Flags & LvalueBit) ); VERIFY( !(internal::traits<Ref<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); VERIFY( !(Ref<ConstPlainObjectType>::Flags & LvalueBit) ); VERIFY( !(Ref<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); } template<typename B> EIGEN_DONT_INLINE void call_ref_1(Ref<SparseMatrix<float> > a, const B &b) { VERIFY_IS_EQUAL(a.toDense(),b.toDense()); } template<typename B> EIGEN_DONT_INLINE void call_ref_2(const Ref<const SparseMatrix<float> >& a, const B &b) { VERIFY_IS_EQUAL(a.toDense(),b.toDense()); } void call_ref() { // SparseVector<std::complex<float> > ca = VectorXcf::Random(10).sparseView(); // SparseVector<float> a = VectorXf::Random(10).sparseView(); SparseMatrix<float> A = MatrixXf::Random(10,10).sparseView(0.5,1); SparseMatrix<float,RowMajor> B = MatrixXf::Random(10,10).sparseView(0.5,1); const SparseMatrix<float>& Ac(A); Block<SparseMatrix<float> > Ab(A,0,1, 3,3); const Block<SparseMatrix<float> > Abc(A,0,1,3,3); VERIFY_EVALUATION_COUNT( call_ref_1(A, A), 0); // VERIFY_EVALUATION_COUNT( call_ref_1(Ac, Ac), 0); // does not compile on purpose VERIFY_EVALUATION_COUNT( call_ref_2(A, A), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A.transpose(), A.transpose()), 1); VERIFY_EVALUATION_COUNT( call_ref_2(Ac,Ac), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A+A,2*Ac), 1); VERIFY_EVALUATION_COUNT( call_ref_2(B, B), 1); VERIFY_EVALUATION_COUNT( call_ref_2(B.transpose(), B.transpose()), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A*A, A*A), 1); Ref<SparseMatrix<float> > Ar(A); VERIFY_IS_APPROX(Ar+Ar, A+A); VERIFY_EVALUATION_COUNT( call_ref_1(Ar, A), 0); VERIFY_EVALUATION_COUNT( call_ref_2(Ar, A), 0); Ref<SparseMatrix<float,RowMajor> > Br(B); VERIFY_EVALUATION_COUNT( call_ref_1(Br.transpose(), Br.transpose()), 0); VERIFY_EVALUATION_COUNT( call_ref_2(Br, Br), 1); VERIFY_EVALUATION_COUNT( call_ref_2(Br.transpose(), Br.transpose()), 0); Ref<const SparseMatrix<float> > Arc(A); // VERIFY_EVALUATION_COUNT( call_ref_1(Arc, Arc), 0); // does not compile on purpose VERIFY_EVALUATION_COUNT( call_ref_2(Arc, Arc), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A.middleCols(1,3), A.middleCols(1,3)), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A.col(2), A.col(2)), 0); VERIFY_EVALUATION_COUNT( call_ref_2(A.block(1,1,3,3), A.block(1,1,3,3)), 1); // should be 0 (allocate starts/nnz only) } void test_sparse_ref() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( check_const_correctness(SparseMatrix<float>()) ); CALL_SUBTEST_1( check_const_correctness(SparseMatrix<double,RowMajor>()) ); CALL_SUBTEST_2( call_ref() ); } }