#ifndef EIGEN_TEST_GPU_COMMON_H #define EIGEN_TEST_GPU_COMMON_H #ifdef EIGEN_USE_HIP #include #include #else #include #include #include #endif #include #define EIGEN_USE_GPU #include #if !defined(__CUDACC__) && !defined(__HIPCC__) dim3 threadIdx, blockDim, blockIdx; #endif template void run_on_cpu(const Kernel& ker, int n, const Input& in, Output& out) { for(int i=0; i __global__ __launch_bounds__(1024) void run_on_gpu_meta_kernel(const Kernel ker, int n, const Input* in, Output* out) { int i = threadIdx.x + blockIdx.x*blockDim.x; if(i void run_on_gpu(const Kernel& ker, int n, const Input& in, Output& out) { typename Input::Scalar* d_in; typename Output::Scalar* d_out; std::ptrdiff_t in_bytes = in.size() * sizeof(typename Input::Scalar); std::ptrdiff_t out_bytes = out.size() * sizeof(typename Output::Scalar); gpuMalloc((void**)(&d_in), in_bytes); gpuMalloc((void**)(&d_out), out_bytes); gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice); gpuMemcpy(d_out, out.data(), out_bytes, gpuMemcpyHostToDevice); // Simple and non-optimal 1D mapping assuming n is not too large // That's only for unit testing! dim3 Blocks(128); dim3 Grids( (n+int(Blocks.x)-1)/int(Blocks.x) ); gpuDeviceSynchronize(); #ifdef EIGEN_USE_HIP hipLaunchKernelGGL(HIP_KERNEL_NAME(run_on_gpu_meta_kernel::type, typename std::decay::type>), dim3(Grids), dim3(Blocks), 0, 0, ker, n, d_in, d_out); #else run_on_gpu_meta_kernel<<>>(ker, n, d_in, d_out); #endif gpuDeviceSynchronize(); // check inputs have not been modified gpuMemcpy(const_cast(in.data()), d_in, in_bytes, gpuMemcpyDeviceToHost); gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost); gpuFree(d_in); gpuFree(d_out); } template void run_and_compare_to_gpu(const Kernel& ker, int n, const Input& in, Output& out) { Input in_ref, in_gpu; Output out_ref, out_gpu; #if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) in_ref = in_gpu = in; out_ref = out_gpu = out; #else EIGEN_UNUSED_VARIABLE(in); EIGEN_UNUSED_VARIABLE(out); #endif run_on_cpu (ker, n, in_ref, out_ref); run_on_gpu(ker, n, in_gpu, out_gpu); #if !defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) VERIFY_IS_APPROX(in_ref, in_gpu); VERIFY_IS_APPROX(out_ref, out_gpu); #endif } struct compile_time_device_info { EIGEN_DEVICE_FUNC void operator()(int /*i*/, const int* /*in*/, int* info) const { #if defined(__CUDA_ARCH__) info[0] = int(__CUDA_ARCH__ +0); #endif #if defined(EIGEN_HIP_DEVICE_COMPILE) info[1] = int(EIGEN_HIP_DEVICE_COMPILE +0); #endif } }; void ei_test_init_gpu() { int device = 0; gpuDeviceProp_t deviceProp; gpuGetDeviceProperties(&deviceProp, device); ArrayXi dummy(1), info(10); info = -1; run_on_gpu(compile_time_device_info(),10,dummy,info); std::cout << "GPU compile-time info:\n"; #ifdef EIGEN_CUDACC std::cout << " EIGEN_CUDACC: " << int(EIGEN_CUDACC) << "\n"; #endif #ifdef EIGEN_CUDA_SDK_VER std::cout << " EIGEN_CUDA_SDK_VER: " << int(EIGEN_CUDA_SDK_VER) << "\n"; #endif #ifdef EIGEN_COMP_NVCC std::cout << " EIGEN_COMP_NVCC: " << int(EIGEN_COMP_NVCC) << "\n"; #endif #ifdef EIGEN_HIPCC std::cout << " EIGEN_HIPCC: " << int(EIGEN_HIPCC) << "\n"; #endif std::cout << " EIGEN_CUDA_ARCH: " << info[0] << "\n"; std::cout << " EIGEN_HIP_DEVICE_COMPILE: " << info[1] << "\n"; std::cout << "GPU device info:\n"; std::cout << " name: " << deviceProp.name << "\n"; std::cout << " capability: " << deviceProp.major << "." << deviceProp.minor << "\n"; std::cout << " multiProcessorCount: " << deviceProp.multiProcessorCount << "\n"; std::cout << " maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << "\n"; std::cout << " warpSize: " << deviceProp.warpSize << "\n"; std::cout << " regsPerBlock: " << deviceProp.regsPerBlock << "\n"; std::cout << " concurrentKernels: " << deviceProp.concurrentKernels << "\n"; std::cout << " clockRate: " << deviceProp.clockRate << "\n"; std::cout << " canMapHostMemory: " << deviceProp.canMapHostMemory << "\n"; std::cout << " computeMode: " << deviceProp.computeMode << "\n"; } #endif // EIGEN_TEST_GPU_COMMON_H