// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template<typename T> EIGEN_DONT_INLINE T copy(const T& x) { return x; } template<typename MatrixType> void stable_norm(const MatrixType& m) { /* this test covers the following files: StableNorm.h */ using std::sqrt; using std::abs; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; bool complex_real_product_ok = true; // Check the basic machine-dependent constants. { int ibeta, it, iemin, iemax; ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); Scalar inf = std::numeric_limits<RealScalar>::infinity(); if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) ) { complex_real_product_ok = false; static bool first = true; if(first) std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl; first = false; } } Index rows = m.rows(); Index cols = m.cols(); // get a non-zero random factor Scalar factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); Scalar one(1); MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols); vbig.fill(big); vsmall.fill(small); VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); // test with expressions as input VERIFY_IS_APPROX((one*vrand).stableNorm(), vrand.norm()); VERIFY_IS_APPROX((one*vrand).blueNorm(), vrand.norm()); VERIFY_IS_APPROX((one*vrand).hypotNorm(), vrand.norm()); VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).stableNorm(), vrand.norm()); VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).blueNorm(), vrand.norm()); VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).hypotNorm(), vrand.norm()); RealScalar size = static_cast<RealScalar>(m.size()); // test numext::isfinite VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity())); VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); // test overflow VERIFY((numext::isfinite)(sqrt(size)*abs(big))); VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big)); // test underflow VERIFY((numext::isfinite)(sqrt(size)*abs(small))); VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small)); // Test compilation of cwise() version VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); // test NaN, +inf, -inf MatrixType v; Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); // NaN { v = vrand; v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm())); } // +inf { v = vrand; v(i,j) = std::numeric_limits<RealScalar>::infinity(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); if(complex_real_product_ok){ VERIFY(isPlusInf(v.stableNorm())); } VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); } // -inf { v = vrand; v(i,j) = -std::numeric_limits<RealScalar>::infinity(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); if(complex_real_product_ok) { VERIFY(isPlusInf(v.stableNorm())); } VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm())); VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm())); } // mix { // Ensure unique indices otherwise inf may be overwritten by NaN. Index i2, j2; do { i2 = internal::random<Index>(0,rows-1); j2 = internal::random<Index>(0,cols-1); } while (i2 == i && j2 == j); v = vrand; v(i,j) = -std::numeric_limits<RealScalar>::infinity(); v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN(); VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm())); VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm())); VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm())); VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm())); // hypot propagates inf over NaN. VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isinf)(v.hypotNorm())); } // stableNormalize[d] { VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized()); MatrixType vcopy(vrand); vcopy.stableNormalize(); VERIFY_IS_APPROX(vcopy, vrand.normalized()); VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1)); VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1)); VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1)); VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1)); RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling); VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized()); } } template<typename Scalar> void test_hypot() { typedef typename NumTraits<Scalar>::Real RealScalar; Scalar factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); factor = internal::random<Scalar>(); while(numext::abs2(factor)<RealScalar(1e-4)) factor = internal::random<Scalar>(); Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); Scalar one (1), zero (0), sqrt2 (std::sqrt(2)), nan (std::numeric_limits<RealScalar>::quiet_NaN()); Scalar a = internal::random<Scalar>(-1,1); Scalar b = internal::random<Scalar>(-1,1); VERIFY_IS_APPROX(numext::hypot(a,b),std::sqrt(numext::abs2(a)+numext::abs2(b))); VERIFY_IS_EQUAL(numext::hypot(zero,zero), zero); VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2); VERIFY_IS_APPROX(numext::hypot(big,big), sqrt2*numext::abs(big)); VERIFY_IS_APPROX(numext::hypot(small,small), sqrt2*numext::abs(small)); VERIFY_IS_APPROX(numext::hypot(small,big), numext::abs(big)); VERIFY((numext::isnan)(numext::hypot(nan,a))); VERIFY((numext::isnan)(numext::hypot(a,nan))); } EIGEN_DECLARE_TEST(stable_norm) { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_3( test_hypot<double>() ); CALL_SUBTEST_4( test_hypot<float>() ); CALL_SUBTEST_5( test_hypot<std::complex<double> >() ); CALL_SUBTEST_6( test_hypot<std::complex<float> >() ); CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); CALL_SUBTEST_3( stable_norm(MatrixXd(internal::random<int>(10,200), internal::random<int>(10,200))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); CALL_SUBTEST_6( stable_norm(VectorXcf(internal::random<int>(10,2000))) ); } }