// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud // Copyright (C) 2008 Daniel Gomez Ferro // Copyright (C) 2013 Désiré Nuentsa-Wakam // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA static long g_realloc_count = 0; #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; static long g_dense_op_sparse_count = 0; #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++; #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10; #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20; #endif #include "sparse.h" template void sparse_basic(const SparseMatrixType& ref) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef Matrix Vector2; const Index rows = ref.rows(); const Index cols = ref.cols(); //const Index inner = ref.innerSize(); //const Index outer = ref.outerSize(); typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::RealScalar RealScalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix DenseMatrix; typedef Matrix DenseVector; Scalar eps = 1e-6; Scalar s1 = internal::random(); { SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); std::vector zeroCoords; std::vector nonzeroCoords; initSparse(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); // test coeff and coeffRef for (std::size_t i=0; i >::value) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); if(!nonzeroCoords.empty()) { m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); } VERIFY_IS_APPROX(m, refMat); // test assertion VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); } // test insert (inner random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); bool call_reserve = internal::random()%2; Index nnz = internal::random(1,int(rows)/2); if(call_reserve) { if(internal::random()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); else m2.reserve(m2.outerSize() * nnz); } g_realloc_count = 0; for (Index j=0; j(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random(); } } if(call_reserve && !SparseMatrixType::IsRowMajor) { VERIFY(g_realloc_count==0); } m2.finalize(); VERIFY_IS_APPROX(m2,m1); } // test insert (fully random) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); if(internal::random()%2) m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); for (int k=0; k(0,rows-1); Index j = internal::random(0,cols-1); if ((m1.coeff(i,j)==Scalar(0)) && (internal::random()%2)) m2.insert(i,j) = m1(i,j) = internal::random(); else { Scalar v = internal::random(); m2.coeffRef(i,j) += v; m1(i,j) += v; } } VERIFY_IS_APPROX(m2,m1); } // test insert (un-compressed) for(int mode=0;mode<4;++mode) { DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max(1,int(m2.innerSize())/8))); m2.reserve(r); for (Index k=0; k(0,rows-1); Index j = internal::random(0,cols-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random(); if(mode==3) m2.reserve(r); } if(internal::random()%2) m2.makeCompressed(); VERIFY_IS_APPROX(m2,m1); } // test basic computations { DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); SparseMatrixType m1(rows, cols); SparseMatrixType m2(rows, cols); SparseMatrixType m3(rows, cols); SparseMatrixType m4(rows, cols); initSparse(density, refM1, m1); initSparse(density, refM2, m2); initSparse(density, refM3, m3); initSparse(density, refM4, m4); if(internal::random()) m1.makeCompressed(); Index m1_nnz = m1.nonZeros(); VERIFY_IS_APPROX(m1*s1, refM1*s1); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); VERIFY_IS_APPROX(m4=m1/s1, refM1/s1); VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); else VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); DenseVector rv = DenseVector::Random(m1.cols()); DenseVector cv = DenseVector::Random(m1.rows()); Index r = internal::random(0,m1.rows()-2); Index c = internal::random(0,m1.cols()-1); VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); VERIFY_IS_APPROX(m1.real(), refM1.real()); refM4.setRandom(); // sparse cwise* dense VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); // dense cwise* sparse VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); // mixed sparse-dense VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3); VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4); VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3); VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3)); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3)); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); VERIFY_IS_APPROX(m1.sum(), refM1.sum()); m4 = m1; refM4 = m4; VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); refM3 = refM1; VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2); VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,10); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,20); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2); VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); refM3 = m3; if (rows>=2 && cols>=2) { VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) ); VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) ); VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) ); VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) ); } m1 = m4; refM1 = refM4; // test aliasing VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); m1 = m4; refM1 = refM4; if(m1.isCompressed()) { VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum()); m1.coeffs() += s1; for(Index j = 0; j SpBool; SpBool mb1 = m1.real().template cast(); SpBool mb2 = m2.real().template cast(); VERIFY_IS_EQUAL(mb1.template cast().sum(), refM1.real().template cast().count()); VERIFY_IS_EQUAL((mb1 && mb2).template cast().sum(), (refM1.real().template cast() && refM2.real().template cast()).count()); VERIFY_IS_EQUAL((mb1 || mb2).template cast().sum(), (refM1.real().template cast() || refM2.real().template cast()).count()); SpBool mb3 = mb1 && mb2; if(mb1.coeffs().all() && mb2.coeffs().all()) { VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast() && refM2.real().template cast()).count()); } } } // test reverse iterators { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); std::vector ref_value(m2.innerSize()); std::vector ref_index(m2.innerSize()); if(internal::random()) m2.makeCompressed(); for(Index j = 0; j(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); // check isApprox handles opposite storage order typename Transpose::PlainObject m3(m2); VERIFY(m2.isApprox(m3)); } // test prune { SparseMatrixType m2(rows, cols); DenseMatrix refM2(rows, cols); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); for (Index j=0; j(0,1); if (x<0.1f) { // do nothing } else if (x<0.5f) { countFalseNonZero++; m2.insert(i,j) = Scalar(0); } else { countTrueNonZero++; m2.insert(i,j) = Scalar(1); refM2(i,j) = Scalar(1); } } } if(internal::random()) m2.makeCompressed(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); if(countTrueNonZero>0) VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } // test setFromTriplets { typedef Triplet TripletType; std::vector triplets; Index ntriplets = rows*cols; triplets.reserve(ntriplets); DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); for(Index i=0;i(0,StorageIndex(rows-1)); StorageIndex c = internal::random(0,StorageIndex(cols-1)); Scalar v = internal::random(); triplets.push_back(TripletType(r,c,v)); refMat_sum(r,c) += v; if(std::abs(refMat_prod(r,c))==0) refMat_prod(r,c) = v; else refMat_prod(r,c) *= v; refMat_last(r,c) = v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY_IS_APPROX(m, refMat_sum); m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies()); VERIFY_IS_APPROX(m, refMat_prod); m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); VERIFY_IS_APPROX(m, refMat_last); } // test Map { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse(density, refMat2, m2); initSparse(density, refMat3, m3); { Map mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); Map mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); } Index i = internal::random(0,rows-1); Index j = internal::random(0,cols-1); m2.coeffRef(i,j) = 123; if(internal::random()) m2.makeCompressed(); Map mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123)); VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123)); mapMat2.coeffRef(i,j) = -123; VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123)); } // test triangularView { DenseMatrix refMat2(rows, cols), refMat3(rows, cols); SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse(density, refMat2, m2); refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); { refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); } refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); refMat3 = refMat2.template triangularView(); m3 = m2.template triangularView(); VERIFY_IS_APPROX(m3, refMat3); // check sparse-triangular to dense refMat3 = m2.template triangularView(); VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView())); } // test selfadjointView if(!SparseMatrixType::IsRowMajor) { DenseMatrix refMat2(rows, rows), refMat3(rows, rows); SparseMatrixType m2(rows, rows), m3(rows, rows); initSparse(density, refMat2, m2); refMat3 = refMat2.template selfadjointView(); m3 = m2.template selfadjointView(); VERIFY_IS_APPROX(m3, refMat3); refMat3 += refMat2.template selfadjointView(); m3 += m2.template selfadjointView(); VERIFY_IS_APPROX(m3, refMat3); refMat3 -= refMat2.template selfadjointView(); m3 -= m2.template selfadjointView(); VERIFY_IS_APPROX(m3, refMat3); // selfadjointView only works for square matrices: SparseMatrixType m4(rows, rows+1); VERIFY_RAISES_ASSERT(m4.template selfadjointView()); VERIFY_RAISES_ASSERT(m4.template selfadjointView()); } // test sparseView { DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); // sparse view on expressions: VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval()); VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval()); VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval()); VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval()); } // test diagonal { DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); DenseVector d = m2.diagonal(); VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); d = m2.diagonal().array(); VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); VERIFY_IS_APPROX(const_cast(m2).diagonal(), refMat2.diagonal().eval()); initSparse(density, refMat2, m2, ForceNonZeroDiag); m2.diagonal() += refMat2.diagonal(); refMat2.diagonal() += refMat2.diagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test diagonal to sparse { DenseVector d = DenseVector::Random(rows); DenseMatrix refMat2 = d.asDiagonal(); SparseMatrixType m2; m2 = d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); SparseMatrixType m3(d.asDiagonal()); VERIFY_IS_APPROX(m3, refMat2); refMat2 += d.asDiagonal(); m2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); m2.setZero(); m2 += d.asDiagonal(); refMat2.setZero(); refMat2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); m2.setZero(); m2 -= d.asDiagonal(); refMat2.setZero(); refMat2 -= d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); initSparse(density, refMat2, m2); m2.makeCompressed(); m2 += d.asDiagonal(); refMat2 += d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); initSparse(density, refMat2, m2); m2.makeCompressed(); VectorXi res(rows); for(Index i=0; i(0,3); m2.reserve(res); m2 -= d.asDiagonal(); refMat2 -= d.asDiagonal(); VERIFY_IS_APPROX(m2, refMat2); } // test conservative resize { std::vector< std::pair > inc; if(rows > 3 && cols > 2) inc.push_back(std::pair(-3,-2)); inc.push_back(std::pair(0,0)); inc.push_back(std::pair(3,2)); inc.push_back(std::pair(3,0)); inc.push_back(std::pair(0,3)); inc.push_back(std::pair(0,-1)); inc.push_back(std::pair(-1,0)); inc.push_back(std::pair(-1,-1)); for(size_t i = 0; i< inc.size(); i++) { StorageIndex incRows = inc[i].first; StorageIndex incCols = inc[i].second; SparseMatrixType m1(rows, cols); DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); initSparse(density, refMat1, m1); SparseMatrixType m2 = m1; m2.makeCompressed(); m1.conservativeResize(rows+incRows, cols+incCols); m2.conservativeResize(rows+incRows, cols+incCols); refMat1.conservativeResize(rows+incRows, cols+incCols); if (incRows > 0) refMat1.bottomRows(incRows).setZero(); if (incCols > 0) refMat1.rightCols(incCols).setZero(); VERIFY_IS_APPROX(m1, refMat1); VERIFY_IS_APPROX(m2, refMat1); // Insert new values if (incRows > 0) m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; if (incCols > 0) m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; VERIFY_IS_APPROX(m1, refMat1); } } // test Identity matrix { DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); SparseMatrixType m1(rows, rows); m1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); for(int k=0; k(0,rows-1); Index j = internal::random(0,rows-1); Scalar v = internal::random(); m1.coeffRef(i,j) = v; refMat1.coeffRef(i,j) = v; VERIFY_IS_APPROX(m1, refMat1); if(internal::random(0,10)<2) m1.makeCompressed(); } m1.setIdentity(); refMat1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); } // test array/vector of InnerIterator { typedef typename SparseMatrixType::InnerIterator IteratorType; DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); SparseMatrixType m2(rows, cols); initSparse(density, refMat2, m2); IteratorType static_array[2]; static_array[0] = IteratorType(m2,0); static_array[1] = IteratorType(m2,m2.outerSize()-1); VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 ); VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 ); if(static_array[0] && static_array[1]) { ++(static_array[1]); static_array[1] = IteratorType(m2,0); VERIFY( static_array[1] ); VERIFY( static_array[1].index() == static_array[0].index() ); VERIFY( static_array[1].outer() == static_array[0].outer() ); VERIFY( static_array[1].value() == static_array[0].value() ); } std::vector iters(2); iters[0] = IteratorType(m2,0); iters[1] = IteratorType(m2,m2.outerSize()-1); } // test reserve with empty rows/columns { SparseMatrixType m1(0,cols); m1.reserve(ArrayXi::Constant(m1.outerSize(),1)); SparseMatrixType m2(rows,0); m2.reserve(ArrayXi::Constant(m2.outerSize(),1)); } } template void big_sparse_triplet(Index rows, Index cols, double density) { typedef typename SparseMatrixType::StorageIndex StorageIndex; typedef typename SparseMatrixType::Scalar Scalar; typedef Triplet TripletType; std::vector triplets; double nelements = density * rows*cols; VERIFY(nelements>=0 && nelements < static_cast(NumTraits::highest())); Index ntriplets = Index(nelements); triplets.reserve(ntriplets); Scalar sum = Scalar(0); for(Index i=0;i(0,rows-1); Index c = internal::random(0,cols-1); // use positive values to prevent numerical cancellation errors in sum Scalar v = numext::abs(internal::random()); triplets.push_back(TripletType(r,c,v)); sum += v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); VERIFY(m.nonZeros() <= ntriplets); VERIFY_IS_APPROX(sum, m.sum()); } template void bug1105() { // Regression test for bug 1105 int n = Eigen::internal::random(200,600); SparseMatrix,0, long> mat(n, n); std::complex val; for(int i=0; i(1,200), c = Eigen::internal::random(1,200); if(Eigen::internal::random(0,4) == 0) { r = c; // check square matrices in 25% of tries } EIGEN_UNUSED_VARIABLE(r+c); CALL_SUBTEST_1(( sparse_basic(SparseMatrix(1, 1)) )); CALL_SUBTEST_1(( sparse_basic(SparseMatrix(8, 8)) )); CALL_SUBTEST_2(( sparse_basic(SparseMatrix, ColMajor>(r, c)) )); CALL_SUBTEST_2(( sparse_basic(SparseMatrix, RowMajor>(r, c)) )); CALL_SUBTEST_1(( sparse_basic(SparseMatrix(r, c)) )); CALL_SUBTEST_5(( sparse_basic(SparseMatrix(r, c)) )); CALL_SUBTEST_5(( sparse_basic(SparseMatrix(r, c)) )); r = Eigen::internal::random(1,100); c = Eigen::internal::random(1,100); if(Eigen::internal::random(0,4) == 0) { r = c; // check square matrices in 25% of tries } CALL_SUBTEST_6(( sparse_basic(SparseMatrix(short(r), short(c))) )); CALL_SUBTEST_6(( sparse_basic(SparseMatrix(short(r), short(c))) )); } // Regression test for bug 900: (manually insert higher values here, if you have enough RAM): CALL_SUBTEST_3((big_sparse_triplet >(10000, 10000, 0.125))); CALL_SUBTEST_4((big_sparse_triplet >(10000, 10000, 0.125))); CALL_SUBTEST_7( bug1105<0>() ); } #endif